初中数学

在平面直角坐标系中,抛物线 y = 2 ( x - m ) 2 + 2 m ( m 为常数)的顶点为 A

(1)当 m = 1 2 时,点 A 的坐标是   ,抛物线与 y 轴交点的坐标是   

(2)若点 A 在第一象限,且 OA = 5 ,求此抛物线所对应的二次函数的表达式,并写出函数值 y x 的增大而减小时 x 的取值范围;

(3)当 x 2 m 时,若函数 y = 2 ( x - m ) 2 + 2 m 的最小值为3,求 m 的值;

(4)分别过点 P ( 4 , 2 ) Q ( 4 , 2 - 2 m ) y 轴的垂线,交抛物线的对称轴于点 M N .当抛物线 y = 2 ( x - m ) 2 + 2 m 与四边形 PQNM 的边有两个交点时,将这两个交点分别记为点 B 、点 C ,且点 B 的纵坐标大于点 C 的纵坐标.若点 B y 轴的距离与点 C x 轴的距离相等,直接写出 m 的值.

来源:2021年吉林省长春市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

已知二次函数 y = a x 2 + bx + c ( a > 0 )

(1)若 a = 1 2 b = c = - 2 ,求方程 a x 2 + bx + c = 0 的根的判别式的值;

(2)如图所示,该二次函数的图象与 x 轴交于点 A ( x 1 0 ) B ( x 2 0 ) ,且 x 1 < 0 < x 2 ,与 y 轴的负半轴交于点 C ,点 D 在线段 OC 上,连接 AC BD ,满足 ACO = ABD - b a + c = x 1

①求证: ΔAOC ΔDOB

②连接 BC ,过点 D DE BC 于点 E ,点 F ( 0 , x 1 - x 2 ) y 轴的负半轴上,连接 AF ,且 ACO = CAF + CBD ,求 c x 1 的值.

来源:2021年湖南省株洲市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,已知二次函数 y = a x 2 + bx + c 的图象经过点 C ( 2 , - 3 ) ,且与 x 轴交于原点及点 B ( 8 , 0 )

(1)求二次函数的表达式;

(2)求顶点 A 的坐标及直线 AB 的表达式;

(3)判断 ΔABO 的形状,试说明理由;

(4)若点 P O 上的动点,且 O 的半径为 2 2 ,一动点 E 从点 A 出发,以每秒2个单位长度的速度沿线段 AP 匀速运动到点 P ,再以每秒1个单位长度的速度沿线段 PB 匀速运动到点 B 后停止运动,求点 E 的运动时间 t 的最小值.

来源:2021年湖南省张家界市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx + 2 经过 A ( - 1 , 0 ) B ( 4 , 0 ) 两点,与 y 轴交于点 C ,连接 BC

(1)求该抛物线的函数表达式;

(2)如图2,直线 l : y = kx + 3 经过点 A ,点 P 为直线 l 上的一个动点,且位于 x 轴的上方,点 Q 为抛物线上的一个动点,当 PQ / / y 轴时,作 QM PQ ,交抛物线于点 M (点 M 在点 Q 的右侧),以 PQ QM 为邻边构造矩形 PQMN ,求该矩形周长的最小值;

(3)如图3,设抛物线的顶点为 D ,在(2)的条件下,当矩形 PQMN 的周长取最小值时,抛物线上是否存在点 F ,使得 CBF = DQM ?若存在,请求出点 F 的坐标;若不存在,请说明理由.

来源:2021年湖南省岳阳市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

已知关于 x 的二次函数 y 1 = x 2 + bx + c (实数 b c 为常数).

(1)若二次函数的图象经过点 ( 0 , 4 ) ,对称轴为 x = 1 ,求此二次函数的表达式;

(2)若 b 2 - c = 0 ,当 b - 3 x b 时,二次函数的最小值为21,求 b 的值;

(3)记关于 x 的二次函数 y 2 = 2 x 2 + x + m ,若在(1)的条件下,当 0 x 1 时,总有 y 2 y 1 ,求实数 m 的最小值.

来源:2021年湖南省永州市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 C : y = a x 2 + bx + c ( a 0 ) 经过点 ( 1 , 1 ) ( 4 , 1 )

(1)求抛物线 C 的对称轴.

(2)当 a = - 1 时,将抛物线 C 向左平移2个单位,再向下平移1个单位,得到抛物线 C 1

①求抛物线 C 1 的解析式.

②设抛物线 C 1 x 轴交于 A B 两点(点 A 在点 B 的右侧),与 y 轴交于点 C ,连接 BC .点 D 为第一象限内抛物线 C 1 上一动点,过点 D DE OA 于点 E .设点 D 的横坐标为 m .是否存在点 D ,使得以点 O D E 为顶点的三角形与 ΔBOC 相似,若存在,求出 m 的值;若不存在,请说明理由.

来源:2021年湖南省邵阳市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,在直角坐标系中,二次函数 y = x 2 + bx + c 的图象与 x 轴相交于点 A ( - 1 , 0 ) 和点 B ( 3 , 0 ) ,与 y 轴交于点 C

(1)求 b c 的值;

(2)点 P ( m , n ) 为抛物线上的动点,过 P x 轴的垂线交直线 l : y = x 于点 Q

①当 0 < m < 3 时,求当 P 点到直线 l : y = x 的距离最大时 m 的值;

②是否存在 m ,使得以点 O C P Q 为顶点的四边形是菱形,若不存在,请说明理由;若存在,请求出 m 的值.

来源:2021年湖南省娄底市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图所示,抛物线与 x 轴交于 A B 两点,与 y 轴交于点 C ,且 OA = 2 OB = 4 OC = 8 ,抛物线的对称轴与直线 BC 交于点 M ,与 x 轴交于点 N

(1)求抛物线的解析式;

(2)若点 P 是对称轴上的一个动点,是否存在以 P C M 为顶点的三角形与 ΔMNB 相似?若存在,求出点 P 的坐标,若不存在,请说明理由;

(3) D CO 的中点,一个动点 G D 点出发,先到达 x 轴上的点 E ,再走到抛物线对称轴上的点 F ,最后返回到点 C .要使动点 G 走过的路程最短,请找出点 E F 的位置,写出坐标,并求出最短路程.

(4)点 Q 是抛物线上位于 x 轴上方的一点,点 R x 轴上,是否存在以点 Q 为直角顶点的等腰 Rt Δ CQR ?若存在,求出点 Q 的坐标,若不存在,请说明理由.

来源:2021年湖南省怀化市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为"雁点".例如 ( 1 , 1 ) ( 2021 , 2021 ) 都是"雁点".

(1)求函数 y = 4 x 图象上的"雁点"坐标;

(2)若抛物线 y = a x 2 + 5 x + c 上有且只有一个"雁点" E ,该抛物线与 x 轴交于 M N 两点(点 M 在点 N 的左侧).当 a > 1 时.

①求 c 的取值范围;

②求 EMN 的度数;

(3)如图,抛物线 y = - x 2 + 2 x + 3 x 轴交于 A B 两点(点 A 在点 B 的左侧), P 是抛物线 y = - x 2 + 2 x + 3 上一点,连接 BP ,以点 P 为直角顶点,构造等腰 Rt Δ BPC ,是否存在点 P ,使点 C 恰好为"雁点"?若存在,求出点 P 的坐标;若不存在,请说明理由.

来源:2021年湖南省衡阳市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,平行四边形 ABCD AB 边与 y 轴交于 E 点, F AD 的中点, B C D 的坐标分别为 ( - 2 , 0 ) ( 8 , 0 ) ( 13 , 10 )

(1)求过 B E C 三点的抛物线的解析式;

(2)试判断抛物线的顶点是否在直线 EF 上;

(3)设过 F AB 平行的直线交 y 轴于 Q M 是线段 EQ 之间的动点,射线 BM 与抛物线交于另一点 P ,当 ΔPBQ 的面积最大时,求 P 的坐标.

来源:2021年湖南省常德市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,抛物线 y 1 = - ( x + 4 ) ( x - n ) x 轴交于点 A 和点 B ( n 0 ) ( n - 4 ) ,顶点坐标记为 ( h 1 k 1 ) .抛物线 y 2 = - ( x + 2 n ) 2 - n 2 + 2 n + 9 的顶点坐标记为 ( h 2 k 2 )

(1)写出 A 点坐标;

(2)求 k 1 k 2 的值(用含 n 的代数式表示)

(3)当 - 4 n 4 时,探究 k 1 k 2 的大小关系;

(4)经过点 M ( 2 n + 9 , - 5 n 2 ) 和点 N ( 2 n , 9 - 5 n 2 ) 的直线与抛物线 y 1 = - ( x + 4 ) ( x - n ) y 2 = - ( x + 2 n ) 2 - n 2 + 2 n + 9 的公共点恰好为3个不同点时,求 n 的值.

来源:2021年湖北省宜昌市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

抛物线 y = x 2 - 1 x 轴于 A B 两点 ( A B 的左边).

(1) ACDE 的顶点 C y 轴的正半轴上,顶点 E y 轴右侧的抛物线上;

①如图(1),若点 C 的坐标是 ( 0 , 3 ) ,点 E 的横坐标是 3 2 ,直接写出点 A D 的坐标.

②如图(2),若点 D 在抛物线上,且 ACDE 的面积是12,求点 E 的坐标.

(2)如图(3), F 是原点 O 关于抛物线顶点的对称点,不平行 y 轴的直线 l 分别交线段 AF BF (不含端点)于 G H 两点.若直线 l 与抛物线只有一个公共点,求证: FG + FH 的值是定值.

来源:2021年湖北省武汉市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,抛物线 y = a x 2 + bx + c x 轴交于点 A ( - 1 , 0 ) 和点 B ,与 y 轴交于点 C ,顶点 D 的坐标为 ( 1 , - 4 )

(1)直接写出抛物线的解析式;

(2)如图1,若点 P 在抛物线上且满足 PCB = CBD ,求点 P 的坐标;

(3)如图2, M 是直线 BC 上一个动点,过点 M MN x 轴交抛物线于点 N Q 是直线 AC 上一个动点,当 ΔQMN 为等腰直角三角形时,直接写出此时点 M 及其对应点 Q 的坐标.

来源:2021年湖北省随州市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 + bx - 5 x 轴交于点 A ( - 1 , 0 ) B ( - 5 , 0 ) ,与 y 轴交于点 C ,顶点为 P ,点 N 在抛物线对称轴上且位于 x 轴下方,连 AN 交抛物线于 M ,连 AC CM

(1)求抛物线的解析式;

(2)如图1,当 tan ACM = 2 时,求 M 点的横坐标;

(3)如图2,过点 P x 轴的平行线 l ,过 M MD l D ,若 MD = 3 MN ,求 N 点的坐标.

来源:2021年湖北省十堰市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx + c x 轴于 A ( - 1 , 0 ) B ( 3 , 0 ) 两点,交 y 轴于点 C ( 0 , - 3 ) ,点 Q 为线段 BC 上的动点.

(1)求抛物线的解析式;

(2)求 | QO | + | QA | 的最小值;

(3)过点 Q PQ / / AC 交抛物线的第四象限部分于点 P ,连接 PA PB ,记 ΔPAQ ΔPBQ 面积分别为 S 1 S 2 ,设 S = S 1 + S 2 ,求点 P 坐标,使得 S 最大,并求此最大值.

来源:2021年湖北省荆门市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

初中数学二次函数综合题解答题