在平面直角坐标系中,抛物线 y 1 = - ( x + 4 ) ( x - n ) 与 x 轴交于点 A 和点 B ( n , 0 ) ( n ⩾ - 4 ) ,顶点坐标记为 ( h 1 , k 1 ) .抛物线 y 2 = - ( x + 2 n ) 2 - n 2 + 2 n + 9 的顶点坐标记为 ( h 2 , k 2 ) .
(1)写出 A 点坐标;
(2)求 k 1 , k 2 的值(用含 n 的代数式表示)
(3)当 - 4 ⩽ n ⩽ 4 时,探究 k 1 与 k 2 的大小关系;
(4)经过点 M ( 2 n + 9 , - 5 n 2 ) 和点 N ( 2 n , 9 - 5 n 2 ) 的直线与抛物线 y 1 = - ( x + 4 ) ( x - n ) , y 2 = - ( x + 2 n ) 2 - n 2 + 2 n + 9 的公共点恰好为3个不同点时,求 n 的值.
已知,关于的方程(为整数)的根为整数,双曲线>0过梯形的顶点和腰中点,如图所示,且∠,求四边形的面积。
如图,是矩形纸片,翻折∠、∠使边、边恰好落在上。设分别是落在AC上的两点,分别是折痕与的交点。 ⑴请根据题意,利用尺规作图作出点F、H及折痕CE、AG; ⑵顺次连接G、F、E、H,试确定四边形GFEH的形状,并说明理由。
如图,某货船以24海里/时的速度将一批重要物资从处运往正东方向的处,在点处测得某岛在北偏东的方向上.该货船航行分钟后到达处,此时再测得该岛在北偏东的方向上,已知在岛周围海里的区域内有暗礁.若继续向正东方向航行,该货船有无触礁危险?试说明理由.
如图,已知为⊙O的弦(非直径),为的中点,的延长线交圆于点,∥,且交的延长线于点.::,。求⊙O的半径.
为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题: ⑴在这次调查中共调查了多少名学生?并补充频数分布直方图; ⑵求表示户外活动时间1小时的扇形圆心角的度数。 (3)本次调查中学生参加户外活动的平均时间是否符合要求?并写出户外活动时间的众数和中位数是多少?