在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为"雁点".例如 ( 1 , 1 ) , ( 2021 , 2021 ) … 都是"雁点".
(1)求函数 y = 4 x 图象上的"雁点"坐标;
(2)若抛物线 y = a x 2 + 5 x + c 上有且只有一个"雁点" E ,该抛物线与 x 轴交于 M 、 N 两点(点 M 在点 N 的左侧).当 a > 1 时.
①求 c 的取值范围;
②求 ∠ EMN 的度数;
(3)如图,抛物线 y = - x 2 + 2 x + 3 与 x 轴交于 A 、 B 两点(点 A 在点 B 的左侧), P 是抛物线 y = - x 2 + 2 x + 3 上一点,连接 BP ,以点 P 为直角顶点,构造等腰 Rt Δ BPC ,是否存在点 P ,使点 C 恰好为"雁点"?若存在,求出点 P 的坐标;若不存在,请说明理由.
已知:如图,点 A 、 D 、 C 、 B 在同一条直线上, AD = BC , AE = BF , CE = DF ,求证: AE / / FB .
如图1,已知矩形 AOCB , AB = 6 cm , BC = 16 cm ,动点 P 从点 A 出发,以 3 cm / s 的速度向点 O 运动,直到点 O 为止;动点 Q 同时从点 C 出发,以 2 cm / s 的速度向点 B 运动,与点 P 同时结束运动.
(1)点 P 到达终点 O 的运动时间是 s ,此时点 Q 的运动距离是 cm ;
(2)当运动时间为 2 s 时, P 、 Q 两点的距离为 cm ;
(3)请你计算出发多久时,点 P 和点 Q 之间的距离是 10 cm ;
(4)如图2,以点 O 为坐标原点, OC 所在直线为 x 轴, OA 所在直线为 y 轴, 1 cm 长为单位长度建立平面直角坐标系,连接 AC ,与 PQ 相交于点 D ,若双曲线 y = k x 过点 D ,问 k 的值是否会变化?若会变化,说明理由;若不会变化,请求出 k 的值.
“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.
例如:图1有6个点,图2有12个点,图3有18个点, … … ,按此规律,求图10、图 n 有多少个点?
我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是 6 × 1 = 6 个;图2中黑点个数是 6 × 2 = 12 个:图3中黑点个数是 6 × 3 = 18 个; … … ;所以容易求出图10、图 n 中黑点的个数分别是 、 .
请你参考以上“分块计数法”,先将下面的点阵进行分块,再完成以下问题:
(1)第5个点阵中有 个圆圈;第 n 个点阵中有 个圆圈.
(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.
某种蔬菜的销售单价 y 1 与销售月份 x 之间的关系如图1所示,成本 y 2 与销售月份 x 之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)
(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益 = 售价 − 成本)
(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.
(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?
目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了 m 人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.
(1)根据图中信息求出 m = , n = ;
(2)请你帮助他们将这两个统计图补全;
(3)根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?
(4)已知 A 、 B 两位同学都最认可“微信”, C 同学最认可“支付宝”, D 同学最认可“网购”.从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.