初中数学

如图,在平面直角坐标系中,抛物线 y = x 2 + 4 x 经过坐标原点,与 x 轴正半轴交于点 A ,点 M ( m , n ) 是抛物线上一动点.

(1)如图1,当 m > 0 n > 0 ,且 n = 3 m 时,

①求点 M 的坐标;

②若点 B ( 15 4 y ) 在该抛物线上,连接 OM BM C 是线段 BM 上一动点(点 C 与点 M B 不重合),过点 C CD / / MO ,交 x 轴于点 D ,线段 OD MC 是否相等?请说明理由;

(2)如图2,该抛物线的对称轴交 x 轴于点 K ,点 E ( x , 7 3 ) 在对称轴上,当 m > 2 n > 0 ,且直线 EM x 轴的负半轴于点 F 时,过点 A x 轴的垂线,交直线 EM 于点 N G y 轴上一点,点 G 的坐标为 ( 0 , 18 5 ) ,连接 GF .若 EF + NF = 2 MF ,求证:射线 FE 平分 AFG

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = x 2 + 4 x 经过坐标原点,与 x 轴正半轴交于点 A ,点 M ( m , n ) 是抛物线上一动点.

(1)如图1,当 m > 0 n > 0 ,且 n = 3 m 时,

①求点 M 的坐标;

②若点 B ( 15 4 y ) 在该抛物线上,连接 OM BM C 是线段 BM 上一动点(点 C 与点 M B 不重合),过点 C CD / / MO ,交 x 轴于点 D ,线段 OD MC 是否相等?请说明理由;

(2)如图2,该抛物线的对称轴交 x 轴于点 K ,点 E ( x , 7 3 ) 在对称轴上,当 m > 2 n > 0 ,且直线 EM x 轴的负半轴于点 F 时,过点 A x 轴的垂线,交直线 EM 于点 N G y 轴上一点,点 G 的坐标为 ( 0 , 18 5 ) ,连接 GF .若 EF + NF = 2 MF ,求证:射线 FE 平分 AFG

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx + 3 x 轴于 A ( 3 , 0 ) B ( 1 , 0 ) 两点,交 y 轴于点 C ,动点 P 在抛物线的对称轴上.

(1)求抛物线的解析式;

(2)当以 P B C 为顶点的三角形周长最小时,求点 P 的坐标及 ΔPBC 的周长;

(3)若点 Q 是平面直角坐标系内的任意一点,是否存在点 Q ,使得以 A C P Q 为顶点的四边形是菱形?若存在,请直接写出所有符合条件的点 Q 的坐标;若不存在,请说明理由.

来源:2021年内蒙古通辽市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 + kx + h ( a > 0 )

(1)通过配方可以将其化成顶点式为   ,根据该抛物线在对称轴两侧从左到右图象的特征,可以判断,当顶点在 x   (填上方或下方),即 4 ah k 2   0(填大于或小于)时,该抛物线与 x 轴必有两个交点;

(2)若抛物线上存在两点 A ( x 1 y 1 ) B ( x 2 y 2 ) ,分布在 x 轴的两侧,则抛物线顶点必在 x 轴下方,请你结合 A B 两点在抛物线上的可能位置,根据二次函数的性质,对这个结论的正确性给以说明;(为了便于说明,不妨设 x 1 < x 2 且都不等于顶点的横坐标;另如果需要借助图象辅助说明,可自己画出简单示意图)

(3)根据二次函数(1)(2)结论,求证:当 a > 0 ( a + c ) ( a + b + c ) < 0 时, ( b c ) 2 > 4 a ( a + b + c )

来源:2021年内蒙古呼和浩特市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c x 轴交于 ( 3 , 0 ) B ( 1 , 0 ) 两点,与 y 轴交于点 C ,对称轴 l x 轴交于点 F ,直线 m / / AC ,点 E 是直线 AC 上方抛物线上一动点,过点 E EH m ,垂足为 H ,交 AC 于点 G ,连接 AE EC CH AH

(1)抛物线的解析式为   

(2)当四边形 AHCE 面积最大时,求点 E 的坐标;

(3)在(2)的条件下,连接 EF ,点 P x 轴上一动点,在抛物线上是否存在点 Q ,使得以 F E P Q 为顶点,以 EF 为一边的四边形是平行四边形.若存在,请直接写出点 Q 的坐标;若不存在,说明理由.

来源:2021年内蒙古赤峰市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,抛物线 y = 3 x 2 + bx + c 过点 A ( 0 , 2 ) B ( 2 , 0 ) ,点 C 为第二象限抛物线上一点,连接 AB AC BC ,其中 AC x 轴交于点 E ,且 tan OBC = 2

(1)求点 C 坐标;

(2)点 P ( m , 0 ) 为线段 BE 上一动点 ( P 不与 B E 重合),过点 P 作平行于 y 轴的直线 l ΔABC 的边分别交于 M N 两点,将 ΔBMN 沿直线 MN 翻折得到△ B ' MN ,设四边形 B ' NBM 的面积为 S ,在点 P 移动过程中,求 S m 的函数关系式;

(3)在(2)的条件下,若 S = 3 S ΔACB ' ,请写出所有满足条件的 m 值.

来源:2021年辽宁省营口市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,抛物线 y = - 3 4 x 2 + bx + c x 轴交于点 A 和点 C ( - 1 , 0 ) ,与 y 轴交于点 B ( 0 , 3 ) ,连接 AB BC ,点 P 是抛物线第一象限上的一动点,过点 P PD x 轴于点 D ,交 AB 于点 E

(1)求抛物线的解析式;

(2)如图1,作 PF PD 于点 P ,使 PF = 1 2 OA ,以 PE PF 为邻边作矩形 PEGF .当矩形 PEGF 的面积是 ΔBOC 面积的3倍时,求点 P 的坐标;

(3)如图2,当点 P 运动到抛物线的顶点时,点 Q 在直线 PD 上,若以点 Q A B 为顶点的三角形是锐角三角形,请直接写出点 Q 纵坐标 n 的取值范围.

来源:2021年辽宁省本溪市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

二次函数 y = x 2 - 2 mx 的图象交 x 轴于原点 O 及点 A

感知特例

(1)当 m = 1 时,如图1,抛物线 L : y = x 2 - 2 x 上的点 B O C A D 分别关于点 A 中心对称的点为 B ' O ' C ' A ' D ' ,如表:

B ( - 1 , 3 )

O ( 0 , 0 )

C ( 1 , - 1 )

A (      )

D ( 3 , 3 )

B ' ( 5 , - 3 )

O ' ( 4 , 0 )

C ' ( 3 , 1 )

A ' ( 2 , 0 )

D ' ( 1 , - 3 )

①补全表格;

②在图1中描出表中对称后的点,再用平滑的曲线依次连接各点,得到的图象记为 L '

形成概念

我们发现形如(1)中的图象 L ' 上的点和抛物线 L 上的点关于点 A 中心对称,则称 L ' L 的“孔像抛物线”.例如,当 m = - 2 时,图2中的抛物线 L ' 是抛物线 L 的“孔像抛物线”.

探究问题

(2)①当 m = - 1 时,若抛物线 L 与它的“孔像抛物线” L ' 的函数值都随着 x 的增大而减小,则 x 的取值范围为   

②在同一平面直角坐标系中,当 m 取不同值时,通过画图发现存在一条抛物线与二次函数 y = x 2 - 2 mx 的所有“孔像抛物线” L ' 都有唯一交点,这条抛物线的解析式可能是   (填“ y = a x 2 + bx + c ”或“ y = a x 2 + bx ”或“ y = a x 2 + c ”或“ y = a x 2 ”,其中 abc 0 )

③若二次函数 y = x 2 - 2 mx 及它的“孔像抛物线”与直线 y = m 有且只有三个交点,求 m 的值.

来源:2021年江西省中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,二次函数 y = x 2 + bx + c 的图象与 x 轴交于点 A ( - 1 , 0 ) B ( 3 , 0 ) ,与 y 轴交于点 C

(1) b =    c =   

(2)若点 D 在该二次函数的图象上,且 S ΔABD = 2 S ΔABC ,求点 D 的坐标;

(3)若点 P 是该二次函数图象上位于 x 轴上方的一点,且 S ΔAPC = S ΔAPB ,写出点 P 的坐标.

来源:2021年江苏省扬州市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

在平面直角坐标系中, O 为坐标原点,直线 y = - x + 3 x 轴交于点 B ,与 y 轴交于点 C ,二次函数 y = a x 2 + 2 x + c 的图象过 B C 两点,且与 x 轴交于另一点 A ,点 M 为线段 OB 上的一个动点,过点 M 作直线 l 平行于 y 轴交 BC 于点 F ,交二次函数 y = a x 2 + 2 x + c 的图象于点 E

(1)求二次函数的表达式;

(2)当以 C E F 为顶点的三角形与 ΔABC 相似时,求线段 EF 的长度;

(3)已知点 N y 轴上的点,若点 N F 关于直线 EC 对称,求点 N 的坐标.

来源:2021年江苏省无锡市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图,抛物线 y = - 1 2 x 2 + bx + c x 轴交于 A ( - 1 , 0 ) B ( 4 , 0 ) ,与 y 轴交于点 C .连接 AC BC ,点 P 在抛物线上运动.

(1)求抛物线的表达式;

(2)如图①,若点 P 在第四象限,点 Q PA 的延长线上,当 CAQ = CBA + 45 ° 时,求点 P 的坐标;

(3)如图②,若点 P 在第一象限,直线 AP BC 于点 F ,过点 P x 轴的垂线交 BC 于点 H ,当 ΔPFH 为等腰三角形时,求线段 PH 的长.

来源:2021年江苏省宿迁市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图,二次函数 y = x 2 - ( m + 1 ) x + m ( m 是实数,且 - 1 < m < 0 ) 的图象与 x 轴交于 A B 两点(点 A 在点 B 的左侧),其对称轴与 x 轴交于点 C .已知点 D 位于第一象限,且在对称轴上, OD BD ,点 E x 轴的正半轴上, OC = EC ,连接 ED 并延长交 y 轴于点 F ,连接 AF

(1)求 A B C 三点的坐标(用数字或含 m 的式子表示);

(2)已知点 Q 在抛物线的对称轴上,当 ΔAFQ 的周长的最小值等于 12 5 时,求 m 的值.

来源:2021年江苏省苏州市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图,抛物线 y = m x 2 + ( m 2 + 3 ) x - ( 6 m + 9 ) x 轴交于点 A B ,与 y 轴交于点 C ,已知 B ( 3 , 0 )

(1)求 m 的值和直线 BC 对应的函数表达式;

(2) P 为抛物线上一点,若 S ΔPBC = S ΔABC ,请直接写出点 P 的坐标;

(3) Q 为抛物线上一点,若 ACQ = 45 ° ,求点 Q 的坐标.

来源:2021年江苏省连云港市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,正比例函数 y = kx ( k 0 ) 和二次函数 y = - 1 4 x 2 + bx + 3 的图象都经过点 A ( 4 , 3 ) 和点 B ,过点 A OA 的垂线交 x 轴于点 C D 是线段 AB 上一点(点 D 与点 A O B 不重合), E 是射线 AC 上一点,且 AE = OD ,连接 DE ,过点 D x 轴的垂线交抛物线于点 F ,以 DE DF 为邻边作 DEGF

(1)填空: k =     b =   

(2)设点 D 的横坐标是 t ( t > 0 ) ,连接 EF .若 FGE = DFE ,求 t 的值;

(3)过点 F AB 的垂线交线段 DE 于点 P S ΔDFP = 1 3 S DEGF ,求 OD 的长.

来源:2021年江苏省常州市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,二次函数 y = x 2 + bx + c 的图象经过点 A ( 0 , - 7 4 ) ,点 B ( 1 , 1 4 )

(1)求此二次函数的解析式;

(2)当 - 2 x 2 时,求二次函数 y = x 2 + bx + c 的最大值和最小值;

(3)点 P 为此函数图象上任意一点,其横坐标为 m ,过点 P PQ / / x 轴,点 Q 的横坐标为 - 2 m + 1 .已知点 P 与点 Q 不重合,且线段 PQ 的长度随 m 的增大而减小.

①求 m 的取值范围;

②当 PQ 7 时,直接写出线段 PQ 与二次函数 y = x 2 + bx + c ( - 2 x < 1 3 ) 的图象交点个数及对应的 m 的取值范围.

来源:2021年吉林省中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

初中数学二次函数综合题解答题