如图,在平面直角坐标系 xOy 中,抛物线 y = 3 x 2 + bx + c 过点 A ( 0 , − 2 ) , B ( 2 , 0 ) ,点 C 为第二象限抛物线上一点,连接 AB , AC , BC ,其中 AC 与 x 轴交于点 E ,且 tan ∠ OBC = 2 .
(1)求点 C 坐标;
(2)点 P ( m , 0 ) 为线段 BE 上一动点 ( P 不与 B , E 重合),过点 P 作平行于 y 轴的直线 l 与 ΔABC 的边分别交于 M , N 两点,将 ΔBMN 沿直线 MN 翻折得到△ B ' MN ,设四边形 B ' NBM 的面积为 S ,在点 P 移动过程中,求 S 与 m 的函数关系式;
(3)在(2)的条件下,若 S = 3 S ΔACB ' ,请写出所有满足条件的 m 值.
图①表示的是某综合商场今年1~5月的商品各月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,解答下列问题: (1)来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元,请你根据这一信息将图①中的统计图补充完整. (2)商场服装部5月份的销售额是多少万元? (3)小刚观察图②后认为,5月份商场服装部的销售额比4月份减少了.你同意他的看法吗?请说明理由.
如图, 在平面直角坐标系中, 点(0,8), 点(6 , 8 ). (1)只用直尺(没有刻度)和圆规, 求作一个点,使点同时满足下列两个条件(要求保留作图痕迹, 不必写出作法): ①点P到,两点的距离相等; ②点P到的两边的距离相等. (2)在(1)作出点后, 写出点的坐标.
在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中白球1个,黄球1个,红球1个,摸出一个球记下颜色后放回,再摸出一个球,请用列表法或画树状图法求两次都摸到红球的概率.
解分式方程:
计算: