如图,在平面直角坐标系 xOy 中,正比例函数 y = kx ( k ≠ 0 ) 和二次函数 y = - 1 4 x 2 + bx + 3 的图象都经过点 A ( 4 , 3 ) 和点 B ,过点 A 作 OA 的垂线交 x 轴于点 C . D 是线段 AB 上一点(点 D 与点 A 、 O 、 B 不重合), E 是射线 AC 上一点,且 AE = OD ,连接 DE ,过点 D 作 x 轴的垂线交抛物线于点 F ,以 DE 、 DF 为邻边作 ▱ DEGF .
(1)填空: k = , b = ;
(2)设点 D 的横坐标是 t ( t > 0 ) ,连接 EF .若 ∠ FGE = ∠ DFE ,求 t 的值;
(3)过点 F 作 AB 的垂线交线段 DE 于点 P 若 S ΔDFP = 1 3 S ▱ DEGF ,求 OD 的长.
请先将下式化简,再选择一个适当的数代入求值.
(1)计算:+. (2)解方程:
我县某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产。他们购得规格是170cm×40cm的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A型与B型两种板材。如图所示,(单位:cm 甲 (1)列出方程(组),求出图甲中a与b的值。 (2)在试生产阶段,若将30张标准板材用裁法一裁剪,4张标准板材用裁法二裁剪,再将得到的A型与B型板材做侧面和底面,做成图乙的竖式与横式两种无盖礼品盒。 ①两种裁法共产生A型板材张,B型板材张; ②设做成的竖式无盖礼品盒x个,横式无盖礼品盒的y个,根据题意完成表格:
③做成的竖式和横式两种无盖礼品盒总数最多是个;此时,横式无盖礼品盒可以做个。(在横线上直接写出答案,无需书写过程)
如图,某市有一块长为米,宽为米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当,时的绿化面积.
如图,D、E分别是AC、AB上的点,∠ADE=40°,∠C=40°,∠AED=80° (1)DE与BC平行吗?请说明理由; (2)求∠B的度数。