如图,抛物线 y = - 3 4 x 2 + bx + c 与 x 轴交于点 A 和点 C ( - 1 , 0 ) ,与 y 轴交于点 B ( 0 , 3 ) ,连接 AB , BC ,点 P 是抛物线第一象限上的一动点,过点 P 作 PD ⊥ x 轴于点 D ,交 AB 于点 E .
(1)求抛物线的解析式;
(2)如图1,作 PF ⊥ PD 于点 P ,使 PF = 1 2 OA ,以 PE , PF 为邻边作矩形 PEGF .当矩形 PEGF 的面积是 ΔBOC 面积的3倍时,求点 P 的坐标;
(3)如图2,当点 P 运动到抛物线的顶点时,点 Q 在直线 PD 上,若以点 Q 、 A 、 B 为顶点的三角形是锐角三角形,请直接写出点 Q 纵坐标 n 的取值范围.
如图,为⊙的直径,点是弧的中点,交于点,,. (1)求证: ∽; (2) 求的值;
如图,在□ABCD中,E,F分别是CD,AB上的点,且DE=BF.求证:AE=CF
解方程:
解方程:;
计算: