(本题满分12分,其中第(1)小题5分,第(2)小题4分,第(3)小题3分) 已知抛物线过点A(-1,0),B(4,0),P(5,3),抛物线与y轴交于点C. (1)求二次函数的解析式; (2)求tan∠APC的值; (3)在抛物线上求一点Q,过Q点作x轴的垂线,垂足为H,使得∠BQH=∠APC.
已知:关于x的方程 (1) 当m取何值时,方程有两个实数根? (2) 为m选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根.
如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,AC=6,CD=。 求(1)∠DAC的度数;(2)AB,BD的长。
若抛物线的顶点坐标是(1,16),并且抛物线与轴两交点间的距离为8,(1)试求该抛物线的关系式; (2)求出这条抛物线上纵坐标为12的点的坐标。
计算 (1) (2)
已知Rt△ABC,∠ACB=90°,AC=BC=4,点O是AB中点,点P、Q分别从点A、C出发,沿AC、CB以每秒1个单位的速度运动,到达点C、B后停止。连结PQ、点D是PQ中点,连结CD并延长交AB于点E. (1)试说明:△POQ是等腰直角三角形; (2)设点P、Q运动的时间为t秒,试用含t的代数式来表示△CPQ的面积S,并求出 S的最大值; (3)如图2,点P在运动过程中,连结EP、EQ,问四边形PEQC是什么四边形,并说明理由; (4)求点D运动的路径长(直接写出结果).