首页 / 初中数学 / 试题详细
  • 更新 2022-09-04
  • 科目 数学
  • 题型 解答题
  • 难度 困难
  • 浏览 191

已知抛物线 y = a x 2 + kx + h ( a > 0 )

(1)通过配方可以将其化成顶点式为   ,根据该抛物线在对称轴两侧从左到右图象的特征,可以判断,当顶点在 x   (填上方或下方),即 4 ah k 2   0(填大于或小于)时,该抛物线与 x 轴必有两个交点;

(2)若抛物线上存在两点 A ( x 1 y 1 ) B ( x 2 y 2 ) ,分布在 x 轴的两侧,则抛物线顶点必在 x 轴下方,请你结合 A B 两点在抛物线上的可能位置,根据二次函数的性质,对这个结论的正确性给以说明;(为了便于说明,不妨设 x 1 < x 2 且都不等于顶点的横坐标;另如果需要借助图象辅助说明,可自己画出简单示意图)

(3)根据二次函数(1)(2)结论,求证:当 a > 0 ( a + c ) ( a + b + c ) < 0 时, ( b c ) 2 > 4 a ( a + b + c )

登录免费查看答案和解析

已知抛物线yax2kxh(a<0).(1)通过配方可以将其化