如图,抛物线 y = a x 2 + bx + 3 交 x 轴于 A ( 3 , 0 ) , B ( − 1 , 0 ) 两点,交 y 轴于点 C ,动点 P 在抛物线的对称轴上.
(1)求抛物线的解析式;
(2)当以 P , B , C 为顶点的三角形周长最小时,求点 P 的坐标及 ΔPBC 的周长;
(3)若点 Q 是平面直角坐标系内的任意一点,是否存在点 Q ,使得以 A , C , P , Q 为顶点的四边形是菱形?若存在,请直接写出所有符合条件的点 Q 的坐标;若不存在,请说明理由.
在一次蜡烛燃烧试验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(厘米)与燃烧时间x(小时)之间的关系如图所示,请根据图象所提供的信息解答下列问题: (1)甲、乙两根蜡烛燃烧前的高度分别是, 从点燃到燃尽所用的时间分别。 (2)分别求甲、乙两根蜡烛燃烧时y与x之间的函数关系式; (3)燃烧多长时间时,甲、乙两根蜡烛的高度相等(不考虑都燃尽时的情况)?在什么事件段内,甲蜡烛比乙蜡烛高?在什么时间段内,甲蜡烛比乙蜡烛低?
某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30台派往A地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:
(1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围. (2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案写出.
如图,直线y=-x+8与x轴、y轴分别相交于点A、B,设M是OB上一点,若将△ABM沿AM折叠,使点B恰好落在x轴上的点B'处. 求: (1)点B'的坐标:. (2)直线AM所对应的函数关系式.
已知一次函数y=kx+b与y=mx+n的图象如图所示. (1)写出关于x,y的方程组的解; (2)若0<kx+b<mx+n,根据图像写出x的取值范围.
已知,如图所示,折叠长方形OABC的一边BC,使点B落在OA边的点D处,如果AB=8,BC=10,求E的坐标.