初中数学

抛物线 y = x 2 - 1 x 轴于 A B 两点 ( A B 的左边).

(1) ACDE 的顶点 C y 轴的正半轴上,顶点 E y 轴右侧的抛物线上;

①如图(1),若点 C 的坐标是 ( 0 , 3 ) ,点 E 的横坐标是 3 2 ,直接写出点 A D 的坐标.

②如图(2),若点 D 在抛物线上,且 ACDE 的面积是12,求点 E 的坐标.

(2)如图(3), F 是原点 O 关于抛物线顶点的对称点,不平行 y 轴的直线 l 分别交线段 AF BF (不含端点)于 G H 两点.若直线 l 与抛物线只有一个公共点,求证: FG + FH 的值是定值.

来源:2021年湖北省武汉市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 + kx + h ( a > 0 )

(1)通过配方可以将其化成顶点式为   ,根据该抛物线在对称轴两侧从左到右图象的特征,可以判断,当顶点在 x   (填上方或下方),即 4 ah k 2   0(填大于或小于)时,该抛物线与 x 轴必有两个交点;

(2)若抛物线上存在两点 A ( x 1 y 1 ) B ( x 2 y 2 ) ,分布在 x 轴的两侧,则抛物线顶点必在 x 轴下方,请你结合 A B 两点在抛物线上的可能位置,根据二次函数的性质,对这个结论的正确性给以说明;(为了便于说明,不妨设 x 1 < x 2 且都不等于顶点的横坐标;另如果需要借助图象辅助说明,可自己画出简单示意图)

(3)根据二次函数(1)(2)结论,求证:当 a > 0 ( a + c ) ( a + b + c ) < 0 时, ( b c ) 2 > 4 a ( a + b + c )

来源:2021年内蒙古呼和浩特市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 + bx + c x 轴只有一个公共点.

(1)若抛物线过点 P ( 0 , 1 ) ,求 a + b 的最小值;

(2)已知点 P 1 ( - 2 , 1 ) P 2 ( 2 , - 1 ) P 3 ( 2 , 1 ) 中恰有两点在抛物线上.

①求抛物线的解析式;

②设直线 l : y = kx + 1 与抛物线交于 M N 两点,点 A 在直线 y = - 1 上,且 MAN = 90 ° ,过点 A 且与 x 轴垂直的直线分别交抛物线和 l 于点 B C .求证: ΔMAB ΔMBC 的面积相等.

来源:2021年福建省中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

已知二次函数 y = a x 2 + bx + c ( a > 0 )

(1)若 a = 1 2 b = c = - 2 ,求方程 a x 2 + bx + c = 0 的根的判别式的值;

(2)如图所示,该二次函数的图象与 x 轴交于点 A ( x 1 0 ) B ( x 2 0 ) ,且 x 1 < 0 < x 2 ,与 y 轴的负半轴交于点 C ,点 D 在线段 OC 上,连接 AC BD ,满足 ACO = ABD - b a + c = x 1

①求证: ΔAOC ΔDOB

②连接 BC ,过点 D DE BC 于点 E ,点 F ( 0 , x 1 - x 2 ) y 轴的负半轴上,连接 AF ,且 ACO = CAF + CBD ,求 c x 1 的值.

来源:2021年湖南省株洲市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,抛物线 y 1 = - ( x + 4 ) ( x - n ) x 轴交于点 A 和点 B ( n 0 ) ( n - 4 ) ,顶点坐标记为 ( h 1 k 1 ) .抛物线 y 2 = - ( x + 2 n ) 2 - n 2 + 2 n + 9 的顶点坐标记为 ( h 2 k 2 )

(1)写出 A 点坐标;

(2)求 k 1 k 2 的值(用含 n 的代数式表示)

(3)当 - 4 n 4 时,探究 k 1 k 2 的大小关系;

(4)经过点 M ( 2 n + 9 , - 5 n 2 ) 和点 N ( 2 n , 9 - 5 n 2 ) 的直线与抛物线 y 1 = - ( x + 4 ) ( x - n ) y 2 = - ( x + 2 n ) 2 - n 2 + 2 n + 9 的公共点恰好为3个不同点时,求 n 的值.

来源:2021年湖北省宜昌市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为"雁点".例如 ( 1 , 1 ) ( 2021 , 2021 ) 都是"雁点".

(1)求函数 y = 4 x 图象上的"雁点"坐标;

(2)若抛物线 y = a x 2 + 5 x + c 上有且只有一个"雁点" E ,该抛物线与 x 轴交于 M N 两点(点 M 在点 N 的左侧).当 a > 1 时.

①求 c 的取值范围;

②求 EMN 的度数;

(3)如图,抛物线 y = - x 2 + 2 x + 3 x 轴交于 A B 两点(点 A 在点 B 的左侧), P 是抛物线 y = - x 2 + 2 x + 3 上一点,连接 BP ,以点 P 为直角顶点,构造等腰 Rt Δ BPC ,是否存在点 P ,使点 C 恰好为"雁点"?若存在,求出点 P 的坐标;若不存在,请说明理由.

来源:2021年湖南省衡阳市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

已知二次函数 y = a x 2 + bx + c 的图象经过 ( - 2 , 1 ) ( 2 , - 3 ) 两点.

(1)求 b 的值;

(2)当 c > - 1 时,该函数的图象的顶点的纵坐标的最小值是  1 

(3)设 ( m , 0 ) 是该函数的图象与 x 轴的一个公共点.当 - 1 < m < 3 时,结合函数的图象,直接写出 a 的取值范围.

来源:2021年江苏省南京市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

已知二次函数 y x 2 ﹣( 2 k + 1 x + k 2 + k k 0

(1)当 k 1 2 时,求这个二次函数的顶点坐标;

(2)求证:关于x的一元二次方程

有两个不相等的实数根;

(3)如图,该二次函数与x轴交于AB两点(A点在B点的左侧),与y轴交于C点,Py轴负半轴上一点,且 OP 1 ,直线APBC于点Q,求证: 1 O A 2 + 1 A B 2 = 1 A Q 2

来源:2016年湖南省株洲市中考数学试卷
  • 更新:2021-04-15
  • 题型:未知
  • 难度:未知

如图,抛物线 y = 1 4 x 2 1 2 x + 3 4 x 轴交于 A C 两点(点 A 在点 C 的左边).直线 y = kx + b ( k 0 ) 分别交 x 轴, y 轴于 A B 两点,且除了点 A 之外,该直线与抛物线没有其它任何交点.

(1)求 A C 两点的坐标;

(2)求 k b 的值;

(3)设点 P 是抛物线上的动点,过点 P 作直线 kx + b ( k 0 ) 的垂线,垂足为 H ,交抛物线的对称轴于点 D ,求 PH + DH 的最小值.并求出此时点 P 的坐标.

来源:2017年广西柳州市中考数学试卷
  • 更新:2021-04-28
  • 题型:未知
  • 难度:未知

已知二次函数 y = x 2 + bx + c + 1

①当 b = 1 时,求这个二次函数的对称轴的方程;

②若 c = 1 4 b 2 2 b ,问: b 为何值时,二次函数的图象与 x 轴相切?

③若二次函数的图象与 x 轴交于点 A ( x 1 0 ) B ( x 2 0 ) ,且 x 1 < x 2 b > 0 ,与 y 轴的正半轴交于点 M ,以 AB 为直径的半圆恰好过点 M ,二次函数的对称轴 l x 轴、直线 BM 、直线 AM 分别交于点 D E F ,且满足 DE EF = 1 3 ,求二次函数的表达式.

来源:2017年湖南省株洲市中考数学试卷
  • 更新:2021-05-06
  • 题型:未知
  • 难度:未知

如图所示,二次函数的图象(记为抛物线轴交于点,与轴分别交于点,点的横坐标分别记为,且

(1)若,且过点,求该二次函数的表达式;

(2)若关于的一元二次方程的判别式△.求证:当时,二次函数的图象与轴没有交点.

(3)若,点的坐标为,过点作直线垂直于轴,且抛物线的的顶点在直线上,连接的延长线与抛物线交于点,若,求的最小值.

来源:2020年湖南省株洲市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M10),且ab

)求抛物线顶点Q的坐标(用含a的代数式表示);

)说明直线与抛物线有两个交点;

)直线与抛物线的另一个交点记为N

)若 - 1 a - 1 2 ,求线段MN长度的取值范围;

)求QMN面积的最小值

来源:2017年福建省中考数学试卷
  • 更新:2021-03-12
  • 题型:未知
  • 难度:未知

已知二次函数: y = a x 2 + ( 2 a + 1 ) x + 2 ( a < 0 )

(1)求证:二次函数的图象与 x 轴有两个交点;

(2)当二次函数的图象与 x 轴的两个交点的横坐标均为整数,且 a 为负整数时,求 a 的值及二次函数的解析式并画出二次函数的图象(不用列表,只要求用其与 x 轴的两个交点 A B ( A B 的左侧),与 y 轴的交点 C 及其顶点 D 这四点画出二次函数的大致图象,同时标出 A B C D 的位置);

(3)在(2)的条件下,二次函数的图象上是否存在一点 P 使 PCA = 75 ° ?如果存在,求出点 P 的坐标;如果不存在,请说明理由.

来源:2019年广西玉林市中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

在直角坐标系中,设函数 y = a x 2 + bx + 1 ( a b 是常数, a 0 )

(1)若该函数的图象经过 ( 1 , 0 ) ( 2 , 1 ) 两点,求函数的表达式,并写出函数图象的顶点坐标;

(2)写出一组 a b 的值,使函数 y = a x 2 + bx + 1 的图象与 x 轴有两个不同的交点,并说明理由.

(3)已知 a = b = 1 ,当 x = p q ( p q 是实数, p q ) 时,该函数对应的函数值分别为 P Q .若 p + q = 2 ,求证: P + Q > 6

来源:2021年浙江省杭州市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,二次函数 y = x 2 - ( m + 1 ) x + m ( m 是实数,且 - 1 < m < 0 ) 的图象与 x 轴交于 A B 两点(点 A 在点 B 的左侧),其对称轴与 x 轴交于点 C .已知点 D 位于第一象限,且在对称轴上, OD BD ,点 E x 轴的正半轴上, OC = EC ,连接 ED 并延长交 y 轴于点 F ,连接 AF

(1)求 A B C 三点的坐标(用数字或含 m 的式子表示);

(2)已知点 Q 在抛物线的对称轴上,当 ΔAFQ 的周长的最小值等于 12 5 时,求 m 的值.

来源:2021年江苏省苏州市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

初中数学抛物线与x轴的交点解答题