如图,抛物线 y = − 1 4 x 2 − 1 2 x + 3 4 与 x 轴交于 A , C 两点(点 A 在点 C 的左边).直线 y = kx + b ( k ≠ 0 ) 分别交 x 轴, y 轴于 A , B 两点,且除了点 A 之外,该直线与抛物线没有其它任何交点.
(1)求 A , C 两点的坐标;
(2)求 k , b 的值;
(3)设点 P 是抛物线上的动点,过点 P 作直线 kx + b ( k ≠ 0 ) 的垂线,垂足为 H ,交抛物线的对称轴于点 D ,求 PH + DH 的最小值.并求出此时点 P 的坐标.
如图,在四边形ABCD中,ABBC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.
已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2), (1)求这两个函数的关系式; (2)观察图象,写出使得y1>y2成立的自变量x的取值范围; (3)若P为Y轴上得一点,连接PA、PB,△PAB的面积为6,求P点的坐标。
如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=OC,连接 CE、OE,连接AE交OD于点F. (1)求证:OE=CD (2)若菱形ABCD的边长为4, ∠ABC=60°,求AE的长.
如图,正方形ABCD中,点E、F分别在边BC、CD上,AE=AF,AC和EF交于点O,延长AC至点G,使得AO=OG,连接EG、FG. (1)求证:BE=DF,0E=0F (2)求证:四边形AEGF是菱形.
如图,菱形ABCD中,分别延长DC,BC至点E,F,使CE=CD,CF=CB,联结DB,BE,EF,FD. 求证:四边形DBEF是矩形;