初中数学

如图,抛物线 C 1 : y = x 2 2 x 与抛物线 C 2 : y = a x 2 + bx 开口大小相同、方向相反,它们相交于 O C 两点,且分别与 x 轴的正半轴交于点 B ,点 A OA = 2 OB

(1)求抛物线 C 2 的解析式;

(2)在抛物线 C 2 的对称轴上是否存在点 P ,使 PA + PC 的值最小?若存在,求出点 P 的坐标,若不存在,说明理由;

(3) M 是直线 OC 上方抛物线 C 2 上的一个动点,连接 MO MC M 运动到什么位置时, ΔMOC 面积最大?并求出最大面积.

来源:2019年贵州省遵义市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + 3 2 x + 4 的对称轴是直线 x = 3 ,且与 x 轴相交于 A B 两点 ( B 点在 A 点右侧)与 y 轴交于 C 点.

(1)求抛物线的解析式和 A B 两点的坐标;

(2)若点 P 是抛物线上 B C 两点之间的一个动点(不与 B C 重合),则是否存在一点 P ,使 ΔPBC 的面积最大.若存在,请求出 ΔPBC 的最大面积;若不存在,试说明理由;

(3)若 M 是抛物线上任意一点,过点 M y 轴的平行线,交直线 BC 于点 N ,当 MN = 3 时,求 M 点的坐标.

来源:2018年四川省遂宁市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 + bx + 3 经过点 A ( 1 , 0 ) 和点 B ( 3 , 0 ) ,与 y 轴交于点 C ,点 P 为第二象限内抛物线上的动点.

(1)抛物线的解析式为  ,抛物线的顶点坐标为  

(2)如图1,连接 OP BC 于点 D ,当 S ΔCPD : S ΔBPD = 1 : 2 时,请求出点 D 的坐标;

(3)如图2,点 E 的坐标为 ( 0 , 1 ) ,点 G x 轴负半轴上的一点, OGE = 15 ° ,连接 PE ,若 PEG = 2 OGE ,请求出点 P 的坐标;

(4)如图3,是否存在点 P ,使四边形 BOCP 的面积为8?若存在,请求出点 P 的坐标;若不存在,请说明理由.

来源:2019年贵州省黔东南州中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图(1),在平面直角坐标系中,抛物线 y a x 2 + bx + 4 a 0 y轴交于点A,与x轴交于点 C (﹣ 2 0 ,且经过点B(8,4),连接ABBO,作 AM OB 于点M,将 Rt OMA 沿y轴翻折,点M的对应点为点N.解答下列问题:

(1)抛物线的解析式为             ,顶点坐标为           

(2)判断点N是否在直线AC上,并说明理由;

(3)如图(2),将图(1)中 Rt OMA 沿着OB平移后,得到 Rt DEF .若DE边在线段OB上,点F在抛物线上,连接AF,求四边形 AMEF 的面积.

来源:2020年贵州省黔南州中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx + c x 轴交于 A ( 3 0 ) B 两点(点 B 在点 A 的左侧),与 y 轴交于点 C ,且 OB = 3 OA = 3 OC OAC 的平分线 AD y 轴于点 D ,过点 A 且垂直于 AD 的直线 l y 轴于点 E ,点 P x 轴下方抛物线上的一个动点,过点 P PF x 轴,垂足为 F ,交直线 AD 于点 H

(1)求抛物线的解析式;

(2)设点 P 的横坐标为 m ,当 FH = HP 时,求 m 的值;

(3)当直线 PF 为抛物线的对称轴时,以点 H 为圆心, 1 2 HC 为半径作 H ,点 Q H 上的一个动点,求 1 4 AQ + EQ 的最小值.

来源:2018年广西柳州市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + bx 3 x 轴交于点 A ( 3 , 0 ) 和点 B ( 1 , 0 ) ,交 y 轴于点 C ,过点 C CD / / x 轴,交抛物线于点 D

(1)求抛物线的解析式;

(2)若直线 y = m ( 3 < m < 0 ) 与线段 AD BD 分别交于 G H 两点,过 G 点作 EG x 轴于点 E ,过点 H HF x 轴于点 F ,求矩形 GEFH 的最大面积;

(3)若直线 y = kx + 1 将四边形 ABCD 分成左、右两个部分,面积分别为 S 1 S 2 ,且 S 1 : S 2 = 4 : 5 ,求 k 的值.

来源:2018年四川省内江市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图1,抛物线 y = x 2 + 2 x 1 的顶点 A x 轴上,交 y 轴于 B ,将该抛物线向上平移,平移后的抛物线与 x 轴交于 C D ,顶点为 E ( 1 , 4 )

(1)求点 B 的坐标和平移后抛物线的解析式;

(2)点 M 在原抛物线上,平移后的对应点为 N ,若 OM = ON ,求点 M 的坐标;

(3)如图2,直线 CB 与平移后的抛物线交于 F .在抛物线的对称轴上是否存在点 P ,使得以 C F P 为顶点的三角形是直角三角形?若存在,直接写出点 P 的坐标;若不存在,请说明理由.

来源:2018年广西河池市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

二次函数 y = x 2 - 2 mx 的图象交 x 轴于原点 O 及点 A

感知特例

(1)当 m = 1 时,如图1,抛物线 L : y = x 2 - 2 x 上的点 B O C A D 分别关于点 A 中心对称的点为 B ' O ' C ' A ' D ' ,如表:

B ( - 1 , 3 )

O ( 0 , 0 )

C ( 1 , - 1 )

A (      )

D ( 3 , 3 )

B ' ( 5 , - 3 )

O ' ( 4 , 0 )

C ' ( 3 , 1 )

A ' ( 2 , 0 )

D ' ( 1 , - 3 )

①补全表格;

②在图1中描出表中对称后的点,再用平滑的曲线依次连接各点,得到的图象记为 L '

形成概念

我们发现形如(1)中的图象 L ' 上的点和抛物线 L 上的点关于点 A 中心对称,则称 L ' L 的“孔像抛物线”.例如,当 m = - 2 时,图2中的抛物线 L ' 是抛物线 L 的“孔像抛物线”.

探究问题

(2)①当 m = - 1 时,若抛物线 L 与它的“孔像抛物线” L ' 的函数值都随着 x 的增大而减小,则 x 的取值范围为   

②在同一平面直角坐标系中,当 m 取不同值时,通过画图发现存在一条抛物线与二次函数 y = x 2 - 2 mx 的所有“孔像抛物线” L ' 都有唯一交点,这条抛物线的解析式可能是   (填“ y = a x 2 + bx + c ”或“ y = a x 2 + bx ”或“ y = a x 2 + c ”或“ y = a x 2 ”,其中 abc 0 )

③若二次函数 y = x 2 - 2 mx 及它的“孔像抛物线”与直线 y = m 有且只有三个交点,求 m 的值.

来源:2021年江西省中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + bx ( a 0 ) 过点 A ( 3 3 ) 和点 B ( 3 3 0 ) .过点 A 作直线 AC / / x 轴,交 y 轴于点 C

(1)求抛物线的解析式;

(2)在抛物线上取一点 P ,过点 P 作直线 AC 的垂线,垂足为 D .连接 OA ,使得以 A D P 为顶点的三角形与 ΔAOC 相似,求出对应点 P 的坐标;

(3)抛物线上是否存在点 Q ,使得 S ΔAOC = 1 3 S ΔAOQ ?若存在,求出点 Q 的坐标;若不存在,请说明理由.

来源:2018年四川省绵阳市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx - 4 ( a 0 ) x 轴交于点 A ( - 1 , 0 ) B ( 4 , 0 ) ,与 y 轴交于点 C

(1)求该抛物线的解析式;

(2)直线 l 为该抛物线的对称轴,点 D 与点 C 关于直线 l 对称,点 P 为直线 AD 下方抛物线上一动点,连接 PA PD ,求 ΔPAD 面积的最大值.

(3)在(2)的条件下,将抛物线 y = a x 2 + bx - 4 ( a 0 ) 沿射线 AD 平移 4 2 个单位,得到新的抛物线 y 1 ,点 E 为点 P 的对应点,点 F y 1 的对称轴上任意一点,在 y 1 上确定一点 G ,使得以点 D E F G 为顶点的四边形是平行四边形,写出所有符合条件的点 G 的坐标,并任选其中一个点的坐标,写出求解过程.

来源:2021年重庆市中考数学试卷(B卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,已知抛物线 L : y = x 2 + bx + c 经过点 A ( 0 , - 5 ) B ( 5 , 0 )

(1)求 b c 的值;

(2)连结 AB ,交抛物线 L 的对称轴于点 M

①求点 M 的坐标;

②将抛物线 L 向左平移 m ( m > 0 ) 个单位得到抛物线 L 1 .过点 M MN / / y 轴,交抛物线 L 1 于点 N P 是抛物线 L 1 上一点,横坐标为 - 1 ,过点 P PE / / x 轴,交抛物线 L 于点 E ,点 E 在抛物线 L 对称轴的右侧.若 PE + MN = 10 ,求 m 的值.

来源:2021年浙江省丽水市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 + c ( a 0 ) 经过点 P ( 3 , 0 ) Q ( 1 , 4 )

(1)求抛物线的解析式;

(2)若点 A 在直线 PQ 上,过点 A AB x 轴于点 B ,以 AB 为斜边在其左侧作等腰直角三角形 ABC

①当 Q A 重合时,求 C 到抛物线对称轴的距离;

②若 C 在抛物线上,求 C 的坐标.

来源:2021年上海市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,二次函数 y = x 2 + bx + c 的图象与 x 轴交于点 A ( - 1 , 0 ) B ( 3 , 0 ) ,与 y 轴交于点 C

(1) b =    c =   

(2)若点 D 在该二次函数的图象上,且 S ΔABD = 2 S ΔABC ,求点 D 的坐标;

(3)若点 P 是该二次函数图象上位于 x 轴上方的一点,且 S ΔAPC = S ΔAPB ,写出点 P 的坐标.

来源:2021年江苏省扬州市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx + 4 x 轴于 A ( - 3 , 0 ) B ( 4 , 0 ) 两点,与 y 轴交于点 C ,连接 AC BC M 为线段 OB 上的一个动点,过点 M PM x 轴,交抛物线于点 P ,交 BC 于点 Q

(1)求抛物线的表达式;

(2)过点 P PN BC ,垂足为点 N .设 M 点的坐标为 M ( m , 0 ) ,请用含 m 的代数式表示线段 PN 的长,并求出当 m 为何值时 PN 有最大值,最大值是多少?

(3)试探究点 M 在运动过程中,是否存在这样的点 Q ,使得以 A C Q 为顶点的三角形是等腰三角形.若存在,请求出此时点 Q 的坐标;若不存在,请说明理由.

来源:2020年山东省枣庄市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx + c x 轴于 A B 两点,交 y 轴于点 C ( 0 , 4 3 ) OA = 1 OB = 4 ,直线 l 过点 A ,交 y 轴于点 D ,交抛物线于点 E ,且满足 tan OAD = 3 4

(1)求抛物线的解析式;

(2)动点 P 从点 B 出发,沿 x 轴正方向以每秒2个单位长度的速度向点 A 运动,动点 Q 从点 A 出发,沿射线 AE 以每秒1个单位长度的速度向点 E 运动,当点 P 运动到点 A 时,点 Q 也停止运动,设运动时间为 t 秒.

①在 P Q 的运动过程中,是否存在某一时刻 t ,使得 ΔADC ΔPQA 相似,若存在,求出 t 的值;若不存在,请说明理由.

②在 P Q 的运动过程中,是否存在某一时刻 t ,使得 ΔAPQ ΔCAQ 的面积之和最大?若存在,求出 t 的值;若不存在,请说明理由.

来源:2018年四川省乐山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质解答题