初中数学

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx - 4 ( a 0 ) x 轴交于点 A ( - 1 , 0 ) B ( 4 , 0 ) ,与 y 轴交于点 C

(1)求该抛物线的解析式;

(2)直线 l 为该抛物线的对称轴,点 D 与点 C 关于直线 l 对称,点 P 为直线 AD 下方抛物线上一动点,连接 PA PD ,求 ΔPAD 面积的最大值.

(3)在(2)的条件下,将抛物线 y = a x 2 + bx - 4 ( a 0 ) 沿射线 AD 平移 4 2 个单位,得到新的抛物线 y 1 ,点 E 为点 P 的对应点,点 F y 1 的对称轴上任意一点,在 y 1 上确定一点 G ,使得以点 D E F G 为顶点的四边形是平行四边形,写出所有符合条件的点 G 的坐标,并任选其中一个点的坐标,写出求解过程.

来源:2021年重庆市中考数学试卷(B卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = x 2 + bx + c 经过 A ( 0 , - 1 ) B ( 4 , 1 ) .直线 AB x 轴于点 C P 是直线 AB 下方抛物线上的一个动点.过点 P PD AB ,垂足为 D PE / / x 轴,交 AB 于点 E

(1)求抛物线的函数表达式;

(2)当 ΔPDE 的周长取得最大值时,求点 P 的坐标和 ΔPDE 周长的最大值;

(3)把抛物线 y = x 2 + bx + c 平移,使得新抛物线的顶点为(2)中求得的点 P M 是新抛物线上一点, N 是新抛物线对称轴上一点,直接写出所有使得以点 A B M N 为顶点的四边形是平行四边形的点 M 的坐标,并把求其中一个点 M 的坐标的过程写出来.

来源:2021年重庆市中考数学试卷(A卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,已知抛物线 L : y = x 2 + bx + c 经过点 A ( 0 , - 5 ) B ( 5 , 0 )

(1)求 b c 的值;

(2)连结 AB ,交抛物线 L 的对称轴于点 M

①求点 M 的坐标;

②将抛物线 L 向左平移 m ( m > 0 ) 个单位得到抛物线 L 1 .过点 M MN / / y 轴,交抛物线 L 1 于点 N P 是抛物线 L 1 上一点,横坐标为 - 1 ,过点 P PE / / x 轴,交抛物线 L 于点 E ,点 E 在抛物线 L 对称轴的右侧.若 PE + MN = 10 ,求 m 的值.

来源:2021年浙江省丽水市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

已知二次函数 y = - x 2 + 6 x - 5

(1)求二次函数图象的顶点坐标;

(2)当 1 x 4 时,函数的最大值和最小值分别为多少?

(3)当 t x t + 3 时,函数的最大值为 m ,最小值为 n ,若 m - n = 3 ,求 t 的值.

来源:2021年浙江省嘉兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 - 2 ax + 3 ( a 0 )

(1)求抛物线的对称轴;

(2)把抛物线沿 y 轴向下平移 3 | a | 个单位,若抛物线的顶点落在 x 轴上,求 a 的值;

(3)设点 P ( a , y 1 ) Q ( 2 , y 2 ) 在抛物线上,若 y 1 > y 2 ,求 a 的取值范围.

来源:2021年新疆生产建设兵团中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 - 2 x + 1 ( a 0 ) 的对称轴为直线 x = 1

(1)求 a 的值;

(2)若点 M ( x 1 y 1 ) N ( x 2 y 2 ) 都在此抛物线上,且 - 1 < x 1 < 0 1 < x 2 < 2 .比较 y 1 y 2 的大小,并说明理由;

(3)设直线 y = m ( m > 0 ) 与抛物线 y = a x 2 - 2 x + 1 交于点 A B ,与抛物线 y = 3 ( x - 1 ) 2 交于点 C D ,求线段 AB 与线段 CD 的长度之比.

来源:2021年安徽省中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 + c ( a 0 ) 经过点 P ( 3 , 0 ) Q ( 1 , 4 )

(1)求抛物线的解析式;

(2)若点 A 在直线 PQ 上,过点 A AB x 轴于点 B ,以 AB 为斜边在其左侧作等腰直角三角形 ABC

①当 Q A 重合时,求 C 到抛物线对称轴的距离;

②若 C 在抛物线上,求 C 的坐标.

来源:2021年上海市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

已知抛物线 y = x 2 + 2 x + 8 x 轴交于点 A B (点 A 在点 B 的左侧),与 y 轴交于点 C

(1)求点 B C 的坐标;

(2)设点 C ' 与点 C 关于该抛物线的对称轴对称.在 y 轴上是否存在点 P ,使 ΔPCC ' ΔPOB 相似,且 PC PO 是对应边?若存在,求出点 P 的坐标;若不存在,请说明理由.

来源:2021年陕西省中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直线 y = 1 2 x + 3 x 轴交于点 A ,与 y 轴交于点 B ,抛物线 y = 1 3 x 2 + bx + c 经过坐标原点和点 A ,顶点为点 M

(1)求抛物线的关系式及点 M 的坐标;

(2)点 E 是直线 AB 下方的抛物线上一动点,连接 EB EA ,当 ΔEAB 的面积等于 25 2 时,求 E 点的坐标;

(3)将直线 AB 向下平移,得到过点 M 的直线 y = mx + n ,且与 x 轴负半轴交于点 C ,取点 D ( 2 , 0 ) ,连接 DM ,求证: ADM ACM = 45 °

来源:2021年山东省枣庄市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,抛物线 y = x 2 + 2 mx + 2 m 2 m 的顶点为 A

(1)求顶点 A 的坐标(用含有字母 m 的代数式表示);

(2)若点 B ( 2 , y B ) C ( 5 , y C ) 在抛物线上,且 y B > y C ,则 m 的取值范围是   m < 3 . 5  ;(直接写出结果即可)

(3)当 1 x 3 时,函数 y 的最小值等于6,求 m 的值.

来源:2021年山东省威海市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

二次函数 y = a x 2 + bx + 4 ( a 0 ) 的图象经过点 A ( 4 , 0 ) B ( 1 , 0 ) ,与 y 轴交于点 C ,点 P 为第二象限内抛物线上一点,连接 BP AC ,交于点 Q ,过点 P PD x 轴于点 D

(1)求二次函数的表达式;

(2)连接 BC ,当 DPB = 2 BCO 时,求直线 BP 的表达式;

(3)请判断: PQ QB 是否有最大值,如有请求出有最大值时点 P 的坐标,如没有请说明理由.

来源:2021年山东省泰安市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,抛物线 y = 1 2 x 2 + bx + c x 轴交于 A B 两点,与 y 轴交于点 C ,直线 y = 1 2 x + 2 B C 两点,连接 AC

(1)求抛物线的解析式;

(2)求证: ΔAOC ΔACB

(3)点 M ( 3 , 2 ) 是抛物线上的一点,点 D 为抛物线上位于直线 BC 上方的一点,过点 D DE x 轴交直线 BC 于点 E ,点 P 为抛物线对称轴上一动点,当线段 DE 的长度最大时,求 PD + PM 的最小值.

来源:2021年山东省东营市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c x 轴交于 ( 3 , 0 ) B ( 1 , 0 ) 两点,与 y 轴交于点 C ,对称轴 l x 轴交于点 F ,直线 m / / AC ,点 E 是直线 AC 上方抛物线上一动点,过点 E EH m ,垂足为 H ,交 AC 于点 G ,连接 AE EC CH AH

(1)抛物线的解析式为   

(2)当四边形 AHCE 面积最大时,求点 E 的坐标;

(3)在(2)的条件下,连接 EF ,点 P x 轴上一动点,在抛物线上是否存在点 Q ,使得以 F E P Q 为顶点,以 EF 为一边的四边形是平行四边形.若存在,请直接写出点 Q 的坐标;若不存在,说明理由.

来源:2021年内蒙古赤峰市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

二次函数 y = x 2 - 2 mx 的图象交 x 轴于原点 O 及点 A

感知特例

(1)当 m = 1 时,如图1,抛物线 L : y = x 2 - 2 x 上的点 B O C A D 分别关于点 A 中心对称的点为 B ' O ' C ' A ' D ' ,如表:

B ( - 1 , 3 )

O ( 0 , 0 )

C ( 1 , - 1 )

A (      )

D ( 3 , 3 )

B ' ( 5 , - 3 )

O ' ( 4 , 0 )

C ' ( 3 , 1 )

A ' ( 2 , 0 )

D ' ( 1 , - 3 )

①补全表格;

②在图1中描出表中对称后的点,再用平滑的曲线依次连接各点,得到的图象记为 L '

形成概念

我们发现形如(1)中的图象 L ' 上的点和抛物线 L 上的点关于点 A 中心对称,则称 L ' L 的“孔像抛物线”.例如,当 m = - 2 时,图2中的抛物线 L ' 是抛物线 L 的“孔像抛物线”.

探究问题

(2)①当 m = - 1 时,若抛物线 L 与它的“孔像抛物线” L ' 的函数值都随着 x 的增大而减小,则 x 的取值范围为   

②在同一平面直角坐标系中,当 m 取不同值时,通过画图发现存在一条抛物线与二次函数 y = x 2 - 2 mx 的所有“孔像抛物线” L ' 都有唯一交点,这条抛物线的解析式可能是   (填“ y = a x 2 + bx + c ”或“ y = a x 2 + bx ”或“ y = a x 2 + c ”或“ y = a x 2 ”,其中 abc 0 )

③若二次函数 y = x 2 - 2 mx 及它的“孔像抛物线”与直线 y = m 有且只有三个交点,求 m 的值.

来源:2021年江西省中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,二次函数 y = x 2 + bx + c 的图象与 x 轴交于点 A ( - 1 , 0 ) B ( 3 , 0 ) ,与 y 轴交于点 C

(1) b =    c =   

(2)若点 D 在该二次函数的图象上,且 S ΔABD = 2 S ΔABC ,求点 D 的坐标;

(3)若点 P 是该二次函数图象上位于 x 轴上方的一点,且 S ΔAPC = S ΔAPB ,写出点 P 的坐标.

来源:2021年江苏省扬州市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质解答题