在平面直角坐标系中,我们定义直线 为抛物线 、 、 为常数, 的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在 轴上的三角形为其“梦想三角形”.
已知抛物线 与其“梦想直线”交于 、 两点(点 在点 的左侧),与 轴负半轴交于点 .
(1)填空:该抛物线的“梦想直线”的解析式为 ,点 的坐标为 ,点 的坐标为 ;
(2)如图,点 为线段 上一动点,将 以 所在直线为对称轴翻折,点 的对称点为 ,若 为该抛物线的“梦想三角形”,求点 的坐标;
(3)当点 在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点 ,使得以点 、 、 、 为顶点的四边形为平行四边形?若存在,请直接写出点 、 的坐标;若不存在,请说明理由.
如图,抛物线 的图象经过 , , 三点.
(1)求抛物线的解析式.
(2)抛物线的顶点 与对称轴 上的点 关于 轴对称,直线 交抛物线于点 ,直线 交 于点 ,若直线 将 的面积分为 两部分,求点 的坐标.
(3) 为抛物线上的一动点, 为对称轴上动点,抛物线上是否存在一点 ,使 、 、 、 为顶点的四边形为平行四边形?若存在,求出点 的坐标;若不存在,请说明理由.
如图,抛物线 经过 、 、 三点,点 为抛物线上第一象限内的一个动点.
(1)求抛物线所对应的函数表达式;
(2)当 的面积为3时,求点 的坐标;
(3)过点 作 ,垂足为点 ,是否存在点 ,使得 中的某个角等于 的2倍?若存在,求点 的横坐标;若不存在,请说明理由.
出关于 的一元二次方程,解之取其非零值可得出点 的横坐标.依此即可得解.
已知,抛物线 与 轴交于 、 两点,与 轴交于点 ,抛物线的对称轴是直线 , 为抛物线的顶点,点 在 轴 点的上方,且 .
(1)求抛物线的解析式及顶点 的坐标;
(2)求证:直线 是 外接圆的切线;
(3)在直线 上方的抛物线上找一点 ,使 ,求点 的坐标;
(4)在坐标轴上找一点 ,使以点 、 、 为顶点的三角形与 相似,直接写出点 的坐标.
如图1,抛物线 与 轴交于 、 两点,与 轴交于点 ,已知点 坐标为 ,点 坐标为 .
(1)求抛物线的表达式;
(2)点 为直线 上方抛物线上的一个动点,当 的面积最大时,求点 的坐标;
(3)如图2,点 为该抛物线的顶点,直线 轴于点 ,在直线 上是否存在点 ,使点 到直线 的距离等于点 到点 的距离?若存在,求出点 的坐标;若不存在,请说明理由.
如图,已知抛物线 经过 , , 三点.
(1)求该抛物线的解析式;
(2)经过点 的直线交 轴于点 ,交线段 于点 ,若 .
①求直线 的解析式;
②已知点 在该抛物线的对称轴 上,且纵坐标为1,点 是该抛物线上位于第一象限的动点,且在 右侧,点 是直线 上的动点,若 是以点 为直角顶点的等腰直角三角形,求点 的坐标.
如图,二次函数 的图象过 、 、 , 三点.
(1)求二次函数的解析式;
(2)若线段 的垂直平分线与 轴交于点 ,与二次函数的图象在 轴上方的部分相交于点 ,求直线 的解析式;
(3)在直线 下方的二次函数的图象上有一动点 ,过点 作 轴,交直线 于 ,当线段 的长最大时,求点 的坐标.
已知抛物线 与 轴交于 , 两点, 为抛物线的顶点,抛物线的对称轴交 轴于点 ,连结 ,且 ,如图所示.
(1)求抛物线的解析式;
(2)设 是抛物线的对称轴上的一个动点.
①过点 作 轴的平行线交线段 于点 ,过点 作 交抛物线于点 ,连结 、 ,求 的面积的最大值;
②连结 ,求 的最小值.
如图,在平面直角坐标系 中,直线 分别交 轴、 轴于 , 两点,经过 , 两点的抛物线 与 轴的正半轴相交于点 .
(1)求抛物线的解析式;
(2)若 为线段 上一点, ,求 的长;
(3)在(2)的条件下,设 是 轴上一点,试问:抛物线上是否存在点 ,使得以 , , , 为顶点的四边形为平行四边形?若存在,求出点 的坐标;若不存在,请说明理由.
如图1,抛物线 与 轴交于点 , .与 轴交于点 .连接 , .已知 的面积为2.
(1)求抛物线的解析式;
(2)平行于 轴的直线与抛物线从左到右依次交于 , 两点.过 , 向 轴作垂线,垂足分别为 , .若四边形 为正方形,求正方形的边长;
(3)如图2,平行于 轴的直线交抛物线于点 ,交 轴于点 .点 是抛物线上 , 之间的一动点,且点 不与 , 重合,连接 交 于点 .连接 并延长交 于点 .在点 运动过程中, 是否为定值?若是,求出这个定值;若不是,请说明理由.
在平面直角坐标系 中,已知抛物线 与 轴交于 , 两点,与 轴交于点 .
(1)求抛物线的函数表达式;
(2)如图1,点 为第四象限抛物线上一点,连接 , 交于点 ,连接 ,记 的面积为 , 的面积为 ,求 的最大值;
(3)如图2,连接 , ,过点 作直线 ,点 , 分别为直线 和抛物线上的点.试探究:在第一象限是否存在这样的点 , ,使 .若存在,请求出所有符合条件的点 的坐标;若不存在,请说明理由.
如图,已知抛物线 过点 , , ,其顶点为 .
(1)求抛物线的解析式;
(2)设点 ,当 的值最小时,求 的值;
(3)若 是抛物线上位于直线 上方的一个动点,求 的面积的最大值;
(4)若抛物线的对称轴与直线 相交于点 , 为直线 上任意一点,过点 作 交抛物线于点 ,以 , , , 为顶点的四边形能否为平行四边形?若能,求点 的坐标;若不能,请说明理由.
如图,已知抛物线 与 轴相交于点 ,与 正半轴相交于点 ,对称轴是直线
(1)求此抛物线的解析式以及点 的坐标.
(2)动点 从点 出发,以每秒2个单位长度的速度沿 轴正方向运动,同时动点 从点 出发,以每秒3个单位长度的速度沿 轴正方向运动,当 点到达 点时, 、 同时停止运动.过动点 作 轴的垂线交线段 于点 ,交抛物线于点 ,设运动的时间为 秒.
①当 为何值时,四边形 为矩形.
②当 时, 能否为等腰三角形?若能,求出 的值;若不能,请说明理由.
如图,抛物线 的图象与 轴交于 、 两点,与 轴交于 点,已知 点坐标为 .
(1)求抛物线的解析式;
(2)试探究 的外接圆的圆心位置,并求出圆心坐标;
(3)若点 是线段 下方的抛物线上一点,求 的面积的最大值,并求出此时 点的坐标.
如图,在平面直角坐标系 中,抛物线 与 轴交于 、 两点,与 轴的负半轴交于点 ,其中 , .
(1)求抛物线 及直线 的解析式.
(2)沿直线 由 至 的方向平移抛物线 ,得到新的抛物线 , 上的点 为 上的点 的对应点,若抛物线 恰好经过点 ,同时与 轴交于另一点 ,连接 、 ,试判断 的形状,并说明理由.
(3)在(2)的条件下,若 为线段 (不含端点)上一动点,作 于 , 于点 ,设 , .试判断 的值是否存在最大值?若存在,求出这个最大值,并求出此时点 的坐标;如不存在,请说明理由.