初中数学

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx 5 y 轴于点 A ,交 x 轴于点 B ( 5 , 0 ) 和点 C ( 1 , 0 ) ,过点 A AD / / x 轴交抛物线于点 D

(1)求此抛物线的表达式;

(2)点 E 是抛物线上一点,且点 E 关于 x 轴的对称点在直线 AD 上,求 ΔEAD 的面积;

(3)若点 P 是直线 AB 下方的抛物线上一动点,当点 P 运动到某一位置时, ΔABP 的面积最大,求出此时点 P 的坐标和 ΔABP 的最大面积.

来源:2018年山东省菏泽市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a ( x 1 ) ( x 3 ) ( a > 0 ) x 轴交于 A B 两点,抛物线上另有一点 C x 轴下方,且使 ΔOCA ΔOBC

(1)求线段 OC 的长度;

(2)设直线 BC y 轴交于点 M ,点 C BM 的中点时,求直线 BM 和抛物线的解析式;

(3)在(2)的条件下,直线 BC 下方抛物线上是否存在一点 P ,使得四边形 ABPC 面积最大?若存在,请求出点 P 的坐标;若不存在,请说明理由.

来源:2018年山东省东营市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中,直线 y = x 1 与抛物线 y = x 2 + bx + c 交于 A B 两点,其中 A ( m , 0 ) B ( 4 , n ) ,该抛物线与 y 轴交于点 C ,与 x 轴交于另一点 D

(1)求 m n 的值及该抛物线的解析式;

(2)如图2,若点 P 为线段 AD 上的一动点(不与 A D 重合),分别以 AP DP 为斜边,在直线 AD 的同侧作等腰直角 ΔAPM 和等腰直角 ΔDPN ,连接 MN ,试确定 ΔMPN 面积最大时 P 点的坐标;

(3)如图3,连接 BD CD ,在线段 CD 上是否存在点 Q ,使得以 A D Q 为顶点的三角形与 ΔABD 相似,若存在,请直接写出点 Q 的坐标;若不存在,请说明理由.

来源:2018年山东省德州市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图①,在平面直角坐标系中,圆心为 P ( x , y ) 的动圆经过点 A ( 1 , 2 ) 且与 x 轴相切于点 B

(1)当 x = 2 时,求 P 的半径;

(2)求 y 关于 x 的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;

(3)请类比圆的定义(圆可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到  的距离等于到  的距离的所有点的集合.

(4)当 P 的半径为1时,若 P 与以上(2)中所得函数图象相交于点 C D ,其中交点 D ( m , n ) 在点 C 的右侧,请利用图②,求 cos APD 的大小.

来源:2018年山东省滨州市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图1,经过原点 O 的抛物线 y = a x 2 + bx ( a 0 ) x 轴交于另一点 A ( 3 2 0 ) ,在第一象限内与直线 y = x 交于点 B ( 2 , t )

(1)求这条抛物线的表达式;

(2)在第四象限内的抛物线上有一点 C ,满足以 B O C 为顶点的三角形的面积为2,求点 C 的坐标;

(3)如图2,若点 M 在这条抛物线上,且 MBO = ABO ,在(2)的条件下,是否存在点 P ,使得 ΔPOC ΔMOB ?若存在,求出点 P 的坐标;若不存在,请说明理由.

来源:2017年山东省淄博市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,抛物线 y = 1 2 x 2 + bx + c x 轴交于点 A 和点 B ,与 y 轴交于点 C ,点 B 坐标为 ( 6 , 0 ) ,点 C 坐标为 ( 0 , 6 ) ,点 D 是抛物线的顶点,过点 D x 轴的垂线,垂足为 E ,连接 BD

(1)求抛物线的解析式及点 D 的坐标;

(2)点 F 是抛物线上的动点,当 FBA = BDE 时,求点 F 的坐标;

(3)若点 M 是抛物线上的动点,过点 M MN / / x 轴与抛物线交于点 N ,点 P x 轴上,点 Q 在坐标平面内,以线段 MN 为对角线作正方形 MPNQ ,请写出点 Q 的坐标.

来源:2017年山东省枣庄市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图1,抛物线 y = a x 2 + bx + 2 x 轴交于 A B 两点,与 y 轴交于点 C AB = 4 ,矩形 OBDC 的边 CD = 1 ,延长 DC 交抛物线于点 E

(1)求抛物线的解析式;

(2)如图2,点 P 是直线 EO 上方抛物线上的一个动点,过点 P y 轴的平行线交直线 EO 于点 G ,作 PH EO ,垂足为 H .设 PH 的长为 l ,点 P 的横坐标为 m ,求 l m 的函数关系式(不必写出 m 的取值范围),并求出 l 的最大值;

(3)如果点 N 是抛物线对称轴上的一点,抛物线上是否存在点 M ,使得以 M A C N 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点 M 的坐标;若不存在,请说明理由.

来源:2017年山东省烟台市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图1,抛物线 y = a x 2 + bx + c 经过平行四边形 ABCD 的顶点 A ( 0 , 3 ) B ( 1 , 0 ) D ( 2 , 3 ) ,抛物线与 x 轴的另一交点为 E .经过点 E 的直线 l 将平行四边形 ABCD 分割为面积相等的两部分,与抛物线交于另一点 F .点 P 为直线 l 上方抛物线上一动点,设点 P 的横坐标为 t

(1)求抛物线的解析式;

(2)当 t 何值时, ΔPFE 的面积最大?并求最大值的立方根;

(3)是否存在点 P 使 ΔPAE 为直角三角形?若存在,求出 t 的值;若不存在,说明理由.

来源:2017年山东省潍坊市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + bx + c 过点 A ( 1 , 0 ) B ( 3 , 0 ) C ( 0 , 3 ) ,点 M N 为抛物线上的动点,过点 M MD / / y 轴,交直线 BC 于点 D ,交 x 轴于点 E

(1)求二次函数 y = a x 2 + bx + c 的表达式;

(2)过点 N NF x 轴,垂足为点 F ,若四边形 MNFE 为正方形(此处限定点 M 在对称轴的右侧),求该正方形的面积;

(3)若 DMN = 90 ° MD = MN ,求点 M 的横坐标.

来源:2017年山东省威海市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图所示,在平面直角坐标系中, C 经过坐标原点 O ,且与 x 轴, y 轴分别相交于 M ( 4 , 0 ) N ( 0 , 3 ) 两点.已知抛物线开口向上,与 C 交于 N H P 三点, P 为抛物线的顶点,抛物线的对称轴经过点 C 且垂直 x 轴于点 D

(1)求线段 CD 的长及顶点 P 的坐标;

(2)求抛物线的函数表达式;

(3)设抛物线交 x 轴于 A B 两点,在抛物线上是否存在点 Q ,使得 S 四边形OPMN = 8 S ΔQAB ,且 ΔQAB ΔOBN 成立?若存在,请求出 Q 点的坐标;若不存在,请说明理由.

来源:2017年山东省日照市中考数学试卷(已修)
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx 3 经过点 A ( 2 , 3 ) ,与 x 轴负半轴交于点 B ,与 y 轴交于点 C ,且 OC = 3 OB

(1)求抛物线的解析式;

(2)点 D y 轴上,且 BDO = BAC ,求点 D 的坐标;

(3)点 M 在抛物线上,点 N 在抛物线的对称轴上,是否存在以点 A B M N 为顶点的四边形是平行四边形?若存在,求出所有符合条件的点 M 的坐标;若不存在,请说明理由.

来源:2017年山东省临沂市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + 2 x + c y 轴交于点 A ( 0 , 6 ) ,与 x 轴交于点 B ( 6 , 0 ) ,点 P 是线段 AB 上方抛物线上的一个动点.

(1)求这条抛物线的表达式及其顶点坐标;

(2)当点 P 移动到抛物线的什么位置时,使得 PAB = 75 ° ,求出此时点 P 的坐标;

(3)当点 P A 点出发沿线段 AB 上方的抛物线向终点 B 移动,在移动中,点 P 的横坐标以每秒1个单位长度的速度变动;与此同时点 M 以每秒1个单位长度的速度沿 AO 向终点 O 移动,点 P M 移动到各自终点时停止.当两个动点移动 t 秒时,求四边形 PAMB 的面积 S 关于 t 的函数表达式,并求 t 为何值时, S 有最大值,最大值是多少?

来源:2017年山东省聊城市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

抛物线 y = a x 2 + bx + c A ( 2 , 3 ) B ( 4 , 3 ) C ( 6 , 5 ) 三点.

(1)求抛物线的表达式;

(2)如图①,抛物线上一点 D 在线段 AC 的上方, DE AB AC 于点 E ,若满足 DE AE = 5 2 ,求点 D 的坐标;

(3)如图②, F 为抛物线顶点,过 A 作直线 l AB ,若点 P 在直线 l 上运动,点 Q x 轴上运动,是否存在这样的点 P Q ,使得以 B P Q 为顶点的三角形与 ΔABF 相似,若存在,求 P Q 的坐标,并求此时 ΔBPQ 的面积;若不存在,请说明理由.

来源:2017年山东省莱芜市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图1,矩形 OABC 的顶点 A C 的坐标分别为 ( 4 , 0 ) ( 0 , 6 ) ,直线 AD BC 于点 D tan OAD = 2 ,抛物线 M 1 : y = a x 2 + bx ( a 0 ) A D 两点.

(1)求点 D 的坐标和抛物线 M 1 的表达式;

(2)点 P 是抛物线 M 1 对称轴上一动点,当 CPA = 90 ° 时,求所有符合条件的点 P 的坐标;

(3)如图2,点 E ( 0 , 4 ) ,连接 AE ,将抛物线 M 1 的图象向下平移 m ( m > 0 ) 个单位得到抛物线 M 2

①设点 D 平移后的对应点为点 D ' ,当点 D ' 恰好在直线 AE 上时,求 m 的值;

②当 1 x m ( m > 1 ) 时,若抛物线 M 2 与直线 AE 有两个交点,求 m 的取值范围.

来源:2017年山东省济南市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx + 1 y 轴于点 A ,交 x 轴正半轴于点 B ( 4 , 0 ) ,与过 A 点的直线相交于另一点 D ( 3 , 5 2 ) ,过点 D DC x 轴,垂足为 C

(1)求抛物线的表达式;

(2)点 P 在线段 OC 上(不与点 O C 重合),过 P PN x 轴,交直线 AD M ,交抛物线于点 N ,连接 CM ,求 ΔPCM 面积的最大值;

(3)若 P x 轴正半轴上的一动点,设 OP 的长为 t ,是否存在 t ,使以点 M C D N 为顶点的四边形是平行四边形?若存在,求出 t 的值;若不存在,请说明理由.

来源:2017年山东省菏泽市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质试题