如图1,抛物线 y = a x 2 + bx + 2 与 x 轴交于 A , B 两点,与 y 轴交于点 C , AB = 4 ,矩形 OBDC 的边 CD = 1 ,延长 DC 交抛物线于点 E .
(1)求抛物线的解析式;
(2)如图2,点 P 是直线 EO 上方抛物线上的一个动点,过点 P 作 y 轴的平行线交直线 EO 于点 G ,作 PH ⊥ EO ,垂足为 H .设 PH 的长为 l ,点 P 的横坐标为 m ,求 l 与 m 的函数关系式(不必写出 m 的取值范围),并求出 l 的最大值;
(3)如果点 N 是抛物线对称轴上的一点,抛物线上是否存在点 M ,使得以 M , A , C , N 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点 M 的坐标;若不存在,请说明理由.
我国青海省玉树地区发生强烈地震以后,国家立即启动救灾预案,积极展开向灾区运送救灾物资和对伤员的救治工作.已知西宁机场和玉树机场相距800千米,甲、乙两机沿同一航线各自从西宁、玉树出发,相向而行.如图,线段AB、CD分别表示甲、乙两机离玉树机场的距离S(百千米)和所用去的时间t(小时)之间的函数关系的图象(注:为了方便计算,将平面直角坐标系中距离S的单位定为(百千米)).观察图象回答下列问题: (1)乙机在甲机出发后几小时,才从玉树机场出发?甲、乙两机的飞行速度每小时各为多少千米? (2)求甲、乙两机各自的S与t的函数关系式; (3)甲、乙两机相遇时,乙机飞行了几小时?离西宁机场多少千米?
已知一次函数y=kx+b的图象经过点(-1, -5),且与正比例函数y= x的图象相交于点(2,a),求 (1)a的值 (2)k,b的值 (3)这两个函数图象与x轴所围成的三角形面积.