如图1,在平面直角坐标系中,直线 y = x − 1 与抛物线 y = − x 2 + bx + c 交于 A 、 B 两点,其中 A ( m , 0 ) 、 B ( 4 , n ) ,该抛物线与 y 轴交于点 C ,与 x 轴交于另一点 D .
(1)求 m 、 n 的值及该抛物线的解析式;
(2)如图2,若点 P 为线段 AD 上的一动点(不与 A 、 D 重合),分别以 AP 、 DP 为斜边,在直线 AD 的同侧作等腰直角 ΔAPM 和等腰直角 ΔDPN ,连接 MN ,试确定 ΔMPN 面积最大时 P 点的坐标;
(3)如图3,连接 BD 、 CD ,在线段 CD 上是否存在点 Q ,使得以 A 、 D 、 Q 为顶点的三角形与 ΔABD 相似,若存在,请直接写出点 Q 的坐标;若不存在,请说明理由.
小明随机调查了若干市民租用公共自行车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如图统计图,请根据图中信息,解答下列问题: (1)这次被调查的总人数是多少? (2)试求表示A组的扇形圆心角的度数,并补全条形统计图. (3)如果骑自行车的平均速度为12km/h,请估算,在租用公共自行车的市民中,骑车路程不超过6km的人数所占的百分比.
在平面直角坐标系中,点 A 的坐标是(0,3),点 B 在 x 轴上,将 △ A O B 绕点 A 逆时针旋转90°得到 △ A E F ,点 O 、 B 的对应点分别是点 E 、 F . (1)若点 B 的坐标是 - 4 , 0 ,请在图中画出 △ A E F ,并写出点 E 、 F 的坐标. (2)当点 F 落在 x 轴的上方时,试写出一个符合条件的点 B 的坐标.
解不等式组.
图1是一张可以折叠的小床展开后支撑起来放在地面的示意图,此时点A、B、C在同一直线上,且∠ACD=90°,图2是小床支撑脚CD折叠的示意图,在折叠过程中,△ACD变形为四边形ABC′D′,最后折叠形成一条线段BD″. (1)小床这样设计应用的数学原理是. (2)若AB:BC=1:4,则tan∠CAD的值是.
如图,二次函数的图象与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.该抛物线的顶点为M. (1)求该抛物线的解析式; (2)判断△BCM的形状,并说明理由; (3)探究坐标轴上是否存在点P,使得以点P、A、C为顶点的三角形与△BCM相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.