如图所示,在平面直角坐标系中, ⊙ C 经过坐标原点 O ,且与 x 轴, y 轴分别相交于 M ( 4 , 0 ) , N ( 0 , 3 ) 两点.已知抛物线开口向上,与 ⊙ C 交于 N , H , P 三点, P 为抛物线的顶点,抛物线的对称轴经过点 C 且垂直 x 轴于点 D .
(1)求线段 CD 的长及顶点 P 的坐标;
(2)求抛物线的函数表达式;
(3)设抛物线交 x 轴于 A , B 两点,在抛物线上是否存在点 Q ,使得 S 四边形OPMN = 8 S ΔQAB ,且 ΔQAB ∽ ΔOBN 成立?若存在,请求出 Q 点的坐标;若不存在,请说明理由.
如图,A、B、C、D四点都在⊙O上,AD是⊙O的直径,且AD=6cm,若∠ABC= ∠CAD,求弦AC的长.
如图,AD为△ABC的外接圆O的直径,AE⊥BC于E,求证:∠BAD=∠EAC。
如图,圆柱形水管内原有积水的水平面宽CD=20cm,水深EB=2cm.求圆形的半径是多少。
某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销量减少20千克,现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?
某电脑公司2012年的各项经营收入中,经营电脑配件的收入为600万元,占全年经营总收入的40%,该公司预计2014年经营总收入要达到2160万元,且计划从2012年到2014年,每年经营总收入的年增长率相同,问每年的增长率是多少。