某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销量减少20千克,现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?
解分式方程:
如图①,在Rt△ABC和Rt△EDC中,∠ACB=∠ECD=90°,AC=EC=BC=DC,AB与EC交于F,ED与AB、BC分别交于M、H. (1)求证:CF=CH; (2)如图②,Rt△ABC不动,将Rt△EDC绕点C旋转到∠BCE=45°时,判断四边形ACDM的形状,并证明你的结论.
如图,抛物线y=-x2+bx+c的顶点为D,与x轴交于A(-1,0)、B(3,0),与y轴交于点C. (1)求该抛物线的解析式; (2)若点P为线段BC上的一点(不与B、C重合),PM∥y轴,且PM交抛物线于点M,交x轴于点N,当四边形OBMC的面积最大时,求△BPN的周长; (3)在(2)的条件下,当四边形OBMC的面积最大时,在抛物线的对称轴上是否存在点Q,使得△CNQ为直角三角形?若存在,直接写出点Q的坐标.
如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC于D. (1)动手操作:利用尺规作⊙O,使⊙O经过点A、D,且圆心O在AB上;并标出⊙O与AB的另一个交点E(保留作图痕迹,不写作法); (2)综合应用:在你所作的图中, ①判断直线BC与⊙O的位置关系,并说明理由; ②若AB=6,BD=2,求线段BD、BE与劣弧所围成的图形面积(结果保留根号和π).
为顺利通过“国家文明城市”验收,东营市政府拟对城区部分路段的人行道地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成. (1)甲、乙两个工程队单独完成此项工程各需多少天? (2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.