(本小题满分10 分)已知 ()的展开式中的系数为11.
(1)求的系数的最小值;
(2)当的系数取得最小值时,求展开式中的奇次幂项的系数之和.
(本小题满分14分)在的展开式中,把叫做三项式系数.
(Ⅰ)当时,写出三项式系数的值;
(Ⅱ)二项式的展开式中,系数可用杨辉三角形数阵表示,如图:
当时,类似杨辉三角形数阵表,请列出三项式的次系数列的数阵表;
(Ⅲ)求的值(可用组合数作答).
某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
零件的个数x |
3 |
4 |
5 |
6 |
加工的时间y |
2.5 |
3 |
4 |
4.5 |
据相关性检验,这组样本数据具有线性相关关系,通过线性回归分析,求得其回归直线的斜率为0.7,则这组样本数据的回归直线方程是( )
A.=0.7x+0.35 B.=0.7x+1
C.=0.7x+2.05 D.=0.7x+0.45
(本小题满分13分)已知抛物线的焦点以及椭圆的上、下焦点及左、右顶点均在圆上.
(1)求抛物线和椭圆的标准方程;
(2)过点的直线交抛物线于、两不同点,交轴于点,已知为定值.
(本小题满分13分)已知椭圆的离心率,直线与椭圆交于两点,为椭圆的右顶点,
(1)求椭圆的方程;
(2)若椭圆上存在两点使,求面积的最大值.
(本题满分12分,第(1)小题5分,第(2)小题7分)
如图,是圆柱体的一条母线,已知过底面圆的圆心,是圆上不与点重合的任意一点,,,.
(1)求直线与直线所成角的大小;
(2)将四面体绕母线旋转一周,求的三边在旋转过程中所围成的几何体的体积.
(本题满分18分,第(1)小题4分,第(2)小题5分,第(3)小题9分)
设函数的定义域为,值域为,如果存在函数,使得函数的值域仍是,那么称是函数的一个等值域变换.
(1)判断下列函数是不是函数的一个等值域变换?说明你的理由;
,;
,.
(2)设函数的定义域为,值域为,函数的定义域为,值域为,那么“”是否为“是的一个等值域变换”的一个必要条件?请说明理由;
(3)设的定义域为,已知是的一个等值域变换,且函数的定义域为,求实数的值.
(本题满分13分,第(1)小题5分,第(2)小题8分)
如图所示,某市拟在长为道路的一侧修建一条运动赛道,赛道的前一部分为曲线段,该曲线段为函数的图像,且图像的最高点为,赛道的后一部分为折线段,且.
(1)求、两点间的直线距离;
(2)求折线段赛道长度的最大值.
(本小题满分14分)已知椭圆的离心率,它的一
个顶点在抛物线的准线上.
(Ⅰ)求椭圆的方程;
(Ⅱ)设是椭圆上两点,已知,且.
(ⅰ)求的取值范围;
(ⅱ)判断的面积是否为定值?若是,求出该定值,不是请说明理由.
己知函数.
(Ⅰ)若 x = 为 f (x)的极值点, 求实数a的值;
(Ⅱ)若 y =" f" (x)在[l, +∞)上为增函数, 求实数a的取值范围;
(Ⅲ)若a=-1时, 方程 有实根, 求实数b的取值范围.
已知F1F2是椭圆=" 1" (a > b > 0)的两个焦点, O为坐标原点, 点 P(-1,)在椭圆
上, 且是以F1F2为直径的圆, 直线: y=kx+m与⊙O相切, 并且与椭圆交于
不同的两点A、 B.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)当 , 且满足时, 求弦长|AB|的取值范围.
已知F1F2是椭圆=" 1" (a > b > 0)的两个焦点, O为坐标原点, 点 P(-1,)在椭圆上, 且是以F1F2为直径的圆, 直线: y=kx+m与⊙O相切, 并且与椭圆交于不同的两点A、 B.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)当 , 且满足时, 求弦长|AB|的取值范围.