(本题满分12分,第(1)小题5分,第(2)小题7分)如图,是圆柱体的一条母线,已知过底面圆的圆心,是圆上不与点重合的任意一点,,,.(1)求直线与直线所成角的大小;(2)将四面体绕母线旋转一周,求的三边在旋转过程中所围成的几何体的体积.
(本小题满分12分)正四棱柱ABCD—A1B1C1D1中,已知AB=2,E,F分别是D1B,AD的中点,(1)建立适当的坐标系,求出E点的坐标;(2)证明:EF是异面直线D1B与AD的公垂线;(3)求二面角D1—BF—C的余弦值.
(本小题满分12分)最近,李师傅一家三口就如何将手中的10万元钱进行投资理财,提出了三种方案.第一种方案:李师傅的儿子认为:根据股市收益大的特点,应该将10万元全部用来买股票.据分析预测:投资股市一年可能获利40%,也可能亏损20%(只有这两种可能),且获利的概率为0.5.第二种方案:李师傅认为:现在股市风险大,基金风险较小,应将10万元全部用来买基金.据分析预测:投资基金一年后可能获利20%,可能损失10%,也可能不赔不赚,且这三种情况发生的概率分别为第三种方案:李师傅的妻子认为:投资股市、基金均有风险,应将10万元全部存入银行一年,现在存款年利率为4%,存款利息利率为5%.针对以上三种投资方案,请你为李师傅家选择一种合理的理财方案,并说明理由.
已知是定义在[-1,1]上的奇函数,且,若任意的,当时,总有.(1)、判断函数在[-1,1]上的单调性,并证明你的结论; (2)、解不等式:;(3)、若对所有的恒成立,其中(是常数),求实数的取值范围.
已知全集U=R,A={x|x2-2x-8<0},B={x||x+3|>2},C={x|x2-4ax+3a2<0}.(1)C(A∩B),求a的取值范围;(2)C(A)∩(B),求a的取值范围.
某校从高一年级期末考试的学生中抽出名学生,其成绩(均为整数)的频率分布直方图如图所示:(Ⅰ)估计这次考试的及格率(分及以上为及格)和平均分;(Ⅱ)从成绩是分以上(包括分)的学生中选两人,求他们在同一分数段的概率.