(本题满分16分,第1小题4分,第2小题7分,第3小题5分)
如图,射线所在的直线的方向向量分别为
,
,点
在
内,
于
,
于
;
(1)若,
,求
的值;
(2)若,
的面积为
,求
的值;
(3)已知为常数,
的中点为
,且
,当
变化时,求动点
轨迹方程;
已知函数(
为实数).
(Ⅰ)当时,求函数
的图象在点
处的切线方程;
(Ⅱ)设函数(其中
为常数),若函数
在区间
上不存在极值,且存在
满足
,求
的取值范围;
(Ⅲ)已知,求证:
.
设是等差数列,是各项都为正整数的等比数列,且,,
,
.
(Ⅰ)求,的通项公式;
(Ⅱ)若数列满足
(
),且
,试求
的通项公式及其前
项和
.
已知双曲线的右焦点为
,过
作斜率为
的直线交双曲线的渐近线于点
,点
在第一象限,
为坐标原点,若
的面积为
,则该双曲线的离心率为
A.![]() |
B.![]() |
C.![]() |
D.![]() |
(本小题满分14分)
如图,摩天轮的半径OA为50m,它的最低点A距地面的高度忽略不计.地面上有一长度为240m的景观带MN,它与摩天轮在同一竖直平面内,且AM=60m.点P从最低点A处按逆时针方向转动到最高点B处,记ÐAOP=q,q∈(0,π).
(1)当q=时,求点P距地面的高度PQ;
(2)试确定q的值,使得ÐMPN取得最大值.
如图所示,在确定的四面体中,截面
平行于对棱
和
.
(1)若⊥
,则截面
与侧面
垂直;
(2)当截面四边形面积取得最大值时,
为
中点;
(3)截面四边形的周长有最小值;
(4)若⊥
,
,则在四面体内存在一点
到四面体
六条棱的中点的距离相等.上述说法正确的是 .
(本题满分14分)
已知数列满足
(
),
,记数列
的前
项和为
,
.
(I)令,求证数列
为等差数列,并求其通项公式;
(II)证明: (i)对任意正整数,
;
(ii)数列从第2项开始是递增数列.
数列
足:
.
(1)求
的值;
(2)求数列
的前
项和
;
(3)令
,证明:数列
的前
项和
满足
.
如图,三角形
所在的平面与长方形
所在的平面垂直,
,
,
,点
是
的中点,点
、
分别在线段
、
上,且
,
.
(1)证明:
;
(2)求二面角
的正切值;
(3)求直线
与直线
所成角的余弦值.
如图,在平面直角坐标系
中,已知椭圆
的离心率为
,且右焦点
到左准线l的距离为3.
(1)求椭圆的标准方程;
(2)过
的直线与椭圆交于
两点,线段
的垂直平分线分别交直线
和
于点
,若
,求直线
的方程.
如图,椭圆
(
)的左右焦点分别为
,
,且过
的直线交椭圆于
两点,且
.
(Ⅰ)若
,
|,求椭圆的标准方程.
(Ⅱ)若
,且
,试确定椭圆离心率的取值范围.
如图,三棱锥 中, 平面 分别为线段 上的点,且
(1)证明: 平面
(2)求二面角 的余弦值。
已知函数 .
(1)求
的最小正周期和最大值;
(2)讨论
在
上的单调性.