数列 a n 足: a 1 + 2 a 2 + … + n a n = 4 - n + 2 2 n - 1 , n ∈ N + . (1)求 a 3 的值; (2)求数列 a n 的前 n 项和 T n ; (3)令 b 1 = a 1 , b n = T n - 1 n + 1 + 1 2 + 1 3 + … + 1 n a n n ≥ 2 ,证明:数列 b n 的前 n 项和 S n 满足 S n < 2 + 2 ln n .
(本小题满分16分)在平面直角坐标系中,已知椭圆:的离心率,直线过椭圆的右焦点,且交椭圆于,两点. (1)求椭圆的标准方程; (2)已知点,连结,过点作垂直于轴的直线,设直线与直线交于点,试探索当变化时,是否存在一条定直线,使得点恒在直线上?若存在,请求出直线的方程;若不存在,请说明理由.
(本小题满分14分)某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900m2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m,三块矩形区域的前、后与内墙各保留 1m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留 3m 宽的通道,如图.设矩形温室的室内长为(m),三块种植植物的矩形区域的总面积为(m2). (1)求关于的函数关系式; (2)求的最大值.
(本小题满分14分)如图,四棱锥的底面ABCD 是平行四边形,平面PBD⊥平面 ABCD, PB=PD,⊥,⊥,,分别是,的中点,连结.求证: (1)∥平面; (2)⊥平面.
(本小题满分14分)在△ABC中,角A,B,C的对边分别为a,b,c.已知,. (1)求的值;(2)求的值;(3)若,求△ABC的面积.
(本小题满分10分)选修4-5:不等式选讲 已知函数. (1)求不等式的解集; (2)若关于的不等式的解集非空,求实数的取值范围.