数列 a n 足: a 1 + 2 a 2 + … + n a n = 4 - n + 2 2 n - 1 , n ∈ N + . (1)求 a 3 的值; (2)求数列 a n 的前 n 项和 T n ; (3)令 b 1 = a 1 , b n = T n - 1 n + 1 + 1 2 + 1 3 + … + 1 n a n n ≥ 2 ,证明:数列 b n 的前 n 项和 S n 满足 S n < 2 + 2 ln n .
如图,在直棱柱(1)证明:;(2)求直线所成角的正弦值.
设关于的一元二次方程.(1)若是从1,2,3这三个数中任取的一个数,是从0,1,2这三个数中任取的一个数,求上述方程有实根的概率; (2)若是从区间[0,3]中任取的一个数,是从区间[0,2]中任取的一个数,求上述方程有实根的概率.
已知命题命题若命题“”是真命题,求实数的取值范围.
已知定义域为的函数是奇函数.(1)求的值;(2)判断函数的单调性并证明;(3)若对任意的,不等式恒成立,求的取值范围
(本小题满分12分)斜三棱柱中,侧面底面ABC,侧面是菱形,,,,E、F分别是,AB的中点.(1)求证:EF∥平面; (2)求证:CE⊥面ABC.(3)求四棱锥的体积.