如图,三角形 △ P D C 所在的平面与长方形 A B C D 所在的平面垂直, P D = P C = 4 , A B = 6 , B C = 3 ,点 E 是 C D 的中点,点 F 、 G 分别在线段 A B 、 B C 上,且 A F = 2 F B , C G = 2 G B .
(1)证明: P E ⊥ F G ; (2)求二面角 P - A D - C 的正切值; (3)求直线 P A 与直线 F G 所成角的余弦值.
在直角坐标系xOy中,圆C:,圆心为C,圆C与直线的一个交点的横坐标为2.(1)求圆C的标准方程;(2)直线与垂直,且与圆C交于不同两点A、B,若,求直线的方程.
点到的距离是点到的距离的倍.(1)求点的轨迹方程;(2)点与点关于点对称,点,求的最大值和最小值.(3)若过的直线从左向右依次交第(2)问中的轨迹于不同两点,,,判断的取值范围并证明.
已知圆,直线(1)求证:对,直线与圆总有两个不同的交点A、B;(2)求弦AB的中点M的轨迹方程,并说明其轨迹是什么曲线;
如图,在四棱锥P ABCD中,侧面PAD⊥底面ABCD,侧棱,,底面为直角梯形,其中BC∥AD, AB⊥AD, ,O为AD中点.(1)求直线与平面所成角的余弦值;(2)求点到平面的距离;(3)线段上是否存在一点,使得二面角的余弦值为?若存在,求出的值;若不存在,请说明理由.
如图所示,正三棱柱的底面边长与侧棱长均为,为中点.(1)求证:∥平面;(2)求直线与平面所成的角的正弦值.