如图,三角形 △ P D C 所在的平面与长方形 A B C D 所在的平面垂直, P D = P C = 4 , A B = 6 , B C = 3 ,点 E 是 C D 的中点,点 F 、 G 分别在线段 A B 、 B C 上,且 A F = 2 F B , C G = 2 G B .
(1)证明: P E ⊥ F G ; (2)求二面角 P - A D - C 的正切值; (3)求直线 P A 与直线 F G 所成角的余弦值.
已知函数. (1)设,求函数的极值; (2)若,且当时,12a恒成立,试确定的取值范围
已知函f(x)=ax3+x2+bx(其中常数a,b∈R),g(x)="f(x)+" f′\(x)是奇函数。 (1)求f(x)的表达式; (2)试论g(x)的单调性,并求g(x)在区间[1,2]上的最大值与最小值。
函数, ⑴求函数的单调区间和极值; ⑵若关于的方程有三个不同的实根,求实数的取值范围
已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=—1. (1)试求常数a、b、c的值; (2)试判断x=±1是函数的极小值点还是极大值点,并说明理由