如图,三角形 △ P D C 所在的平面与长方形 A B C D 所在的平面垂直, P D = P C = 4 , A B = 6 , B C = 3 ,点 E 是 C D 的中点,点 F 、 G 分别在线段 A B 、 B C 上,且 A F = 2 F B , C G = 2 G B .
(1)证明: P E ⊥ F G ; (2)求二面角 P - A D - C 的正切值; (3)求直线 P A 与直线 F G 所成角的余弦值.
(某公司租地建仓库,每月土地占用费y1与车库到车站的距离成反比,而每月库存货物的运费y2与到车站的距离成正比,如果在距车站10公里处建仓库,这两项费用y1和y2分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站多少公里处?
(已知抛物线y=x2+1,定点A(3,1)、B为抛物线上任意一点,点P在线段AB上,且有BP∶PA=1∶2,当B点在抛物线上变动时,求点P的轨迹方程.
某企业生产A、B两种产品,生产每一吨产品所需的劳动力、煤和电耗如下表: 已知生产每吨A产品的利润是7万元,生产每吨B产品的利润是12万元,现因条件限制,该企业仅有劳动力300个,煤360吨,并且供电局只能供电200千瓦,试问该企业生产A、B两种产品各多少吨,才能获得最大利润?
若f(x)是定义在(0,+∞)上的增函数,且对一切x>0满足 (1)求的值; (2)若,解不等式
本题满分12分)已知求证: