已知全集,,若,求的值.
如图,在体积为的正三棱锥中,长为,为棱的中点,求(1)异面直线与所成角的大小(结果用反三角函数值表示);(2)正三棱锥的表面积.
已知曲线的方程为,过原点作斜率为的直线和曲线相交,另一个交点记为,过作斜率为的直线与曲线相交,另一个交点记为,过作斜率为的直线与曲线相交,另一个交点记为,如此下去,一般地,过点作斜率为的直线与曲线相交,另一个交点记为,设点().(1)指出,并求与的关系式();(2)求()的通项公式,并指出点列,, ,, 向哪一点无限接近?说明理由;(3)令,数列的前项和为,设,求所有可能的乘积的和.
设椭圆的中心和抛物线的顶点均为原点,、的焦点均在轴上,过的焦点F作直线,与交于A、B两点,在、上各取两个点,将其坐标记录于下表中:(1)求,的标准方程;(2)若与交于C、D两点,为的左焦点,求的最小值;(3)点是上的两点,且,求证:为定值;反之,当为此定值时,是否成立?请说明理由.
为了寻找马航残骸,我国“雪龙号”科考船于2014年3月26日从港口出发,沿北偏东角的射线方向航行,而在港口北偏东角的方向上有一个给科考船补给物资的小岛,海里,且.现指挥部需要紧急征调位于港口正东海里的处的补给船,速往小岛装上补给物资供给科考船.该船沿方向全速追赶科考船,并在处相遇.经测算当两船运行的航线与海岸线围成的三角形的面积最小时,这种补给方案最优.(1)求关于的函数关系式;(2)应征调位于港口正东多少海里处的补给船只,补给方案最优?