已知棱长为1的正方体ABCD-A1B1C1D1中,E、F、M分别是A1C1、A1D和B1A上任一点,求证:平面A1EF∥平面B1MC
矩形与矩形的公共边为,且平面平面,如图所示,,.(1)证明:平面;(2)求异面直线与所成角的余弦值;(3)若是棱的中点,在线段上是否存在一点,使得平面?证明你的结论.
如图,已知二面角的大小为,于C,于,且.(1)求异面直线与所成角的大小;(2)求点到直线的距离.
如图,正方体棱长为8,分别为中点,分别为棱、上动点,且.(1)求长的取值范围;(2)当取得最小值时,求证:与共面;并求出此时与的交点到直线的距离.
已知函数(其中是常数).(1)若当时,恒有成立,求实数的取值范围;(2)若存在,使成立,求实数的取值范围;(3)若方程在上有唯一实数解,求实数的取值范围.
对于定义域为的函数,若同时满足下列条件:①在内单调递增或单调递减;②存在区间,使在上的值域为;那么把()叫闭函数.(1)求闭函数符合条件②的区间;(2)判断函数是否为闭函数?并说明理由;(3)判断函数是否为闭函数?若是闭函数,求实数的取值范围.