如图,椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 )的左右焦点分别为 F 1 , F 2 ,且过 F 2 的直线交椭圆于 P , Q 两点,且 P Q ⊥ P F 1 .
(Ⅰ)若 P F 1 = 2 + 2 , P F 2 = 2 - 2 |,求椭圆的标准方程. (Ⅱ)若 P Q = λ P F 1 ,且 3 4 ≤ λ ≤ 4 3 ,试确定椭圆离心率的取值范围.
((本小题满分12分)已知几何体的三视图如图所示,其中侧视图和俯视图都是腰长为4的等腰直角三角形,正视图为直角梯形.求:(1)异面直线与所成角的余弦值;(2)二面角的正弦值;(3)此几何体的体积的大小.
(本小题满分12分)已知命题:曲线为双曲线;命题:函数在上是增函数;若命题“或”为真,命题“且”为假,求实数的取值范围.
(本小题满分12分)在中,角、、的对边分别为、、,且满足.(1)求角的大小;(2)当时,求的面积.
(本小题满分13分)已知椭圆的中心在原点,一个焦点F1(0,-2),且离心率e满足:,e,成等比数列.(1)求椭圆方程;(2)是否存在直线l,使l与椭圆交于不同的两点M、N,且线段MN恰被直线x=-平分.若存在,求出l的倾斜角的范围;若不存在,请说明理由.
(本小题满分13分)已知函数().(1)若函数在处的切线与x轴平行,求a的值,并求出函数的极值;(2)已知函数,在(1)的条件下,若恒成立,求b的取值范围.