已知函数,(Ⅰ)求的定义域和值域;(Ⅱ)判断函数在区间(2,5)上的单调性,并用定义来证明所得结论.
设是定义在上函数,且对任意,当时,都有成立.解不等式.
解不等式组.
已知全集,设集合,集合,若,求实数a的取值范围.
对于定义域为的函数,若同时满足下列条件:①在内单调递增或单调递减;②存在区间,使在上的值域为;那么把()叫闭函数,且条件②中的区间为的一个“好区间”.(1)求闭函数的“好区间”;(2)若为闭函数的“好区间”,求、的值;(3)判断函数是否为闭函数?若是闭函数,求实数的取值范围.
已知函数,且.(1)若在区间上有零点,求实数的取值范围;(2)若在上的最大值是2,求实数的的值.