(本小题满分12分)已知定义在上的函数是偶函数,且时,,(1)当时,求解析式;(2)写出的单调递增区间(1)时,(2)和
已知数列中,.(1)若,求;(2)若数列为等差数列,且,求数列的通项公式.
如图,在梯形中,分别是腰的中点,在线段上,且,下底是上底的2倍,若,用表示.
在平面直角坐标系中,已知抛物线:,在此抛物线上一点到焦点的距离是3.(1)求此抛物线的方程;(2)抛物线的准线与轴交于点,过点斜率为的直线与抛物线交于、两点.是否存在这样的,使得抛物线上总存在点满足,若存在,求的取值范围;若不存在,说明理由.
如图,在四棱锥中,底面是矩形,平面,,,依次是的中点.(1)求证:;(2)求直线与平面所成角的正弦值.
如图,已知长方形的两条对角线的交点为,且与所在的直线方程分别为.(1)求所在的直线方程; (2)求出长方形的外接圆的方程.