(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系中,直线l的参数方程为(为参数),若以O为极点,轴正半轴为极轴建立极坐标系,则曲线C的极坐标方程为.(1)求直线l和曲线C的直角坐标方程;(2)当时,求直线l与曲线C公共点的极坐标.
设上的两点,已知向量,,若且椭圆的离心率短轴长为2,为 坐标原点. (Ⅰ)求椭圆的方程; (Ⅱ)若直线过椭圆的焦点(0,c),(c为半焦距),求直线的斜率的值; (Ⅲ)试问:的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
已知椭圆的一条准线方程是,其左、右顶点分别是A、B;双曲线的一条渐近线方程为. (1)求椭圆的方程及双曲线的离心率; (2)在第二象限内取双曲线上一点P,连结BP交椭圆于点M,连结PA并延长交椭圆于点N,若.求证:.
在平面直角坐标系中,点到点的距离的倍与它到直线的距离的倍之和记为.当点运动时,恒等于点的横坐标与之和, 求点的轨迹;
已知双曲线的离心率为,点是双曲线的一个顶点. (1)求双曲线的方程; (2)经过的双曲线右焦点作倾斜角为30°直线,直线与双曲线交于不同的两点,求的长.
已知命题:,命题: 对任何R,都有,命题且为假,或为真,求实数的取值范围.