已知f(x)的定义域为(0,+∞),且满足f(2)=1,f(xy)=f(x)+f(y),又当x2>x1>0时,f(x2)>f(x1).
(1)求f(1)、f(4)、f(8)的值;
(2)若有f(x)+f(x-2)≤3成立,求x的取值范围.
对于在区间上有意义的两个函数,如果对于任意的,都有则称在区间上是“接近的”两个函数,否则称它们在区间上是“非接近的”两个函数。现有两个函数给定一个区间。
(1)若在区间有意义,求实数的取值范围;
(2)讨论在区间上是否是“接近的”。
已知函数f(x)=x-ln(x+a)的最小值为0,其中a>0.
(1)求a的值;
(2)若对任意的x∈[0,+∞),有f(x)≤kx2成立,求实数k的最小值.]
若存在实常数和,使得函数和对其定义域上的任意实数分别满足:和,则称直线为和的“隔离直线”.已知,为自然对数的底数).
(Ⅰ)求的极值;
(Ⅱ)函数和是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
已知曲线 在点 处的切线 平行直线,且点在第三象限.
(Ⅰ)求的坐标;
(Ⅱ)若直线 , 且 也过切点 ,求直线的方程.