设,函数的图像与函数的图像关于点对称.
(1)求函数的解析式;
(2)若关于的方程有两个不同的正数解,求实数的取值范围.
已知函数的图像过坐标原点,且在点处的切线的斜率是.
(1)求实数的值;
(2)求在区间上的最大值;
(3)对任意给定的正实数,曲线上是否存在两点,使得是以为
直角顶点的直角三角形,且此三角形斜边的中点在轴上?请说明理由.
设命题p:函数的定义域为R;命题q:不等式对任意恒成立.
(Ⅰ)如果p是真命题,求实数的取值范围;
(Ⅱ)如果命题“p或q”为真命题且“p且q”为假命题,求实数的取值范围.
设
(Ⅰ)求函数的定义域;
(Ⅱ)若存在实数满足,试求实数的取值范围.
已知,,在处的切线方程为
(Ⅰ)求的单调区间与极值;
(Ⅱ)求的解析式;
(III)当时,恒成立,求的取值范围.