已知函数的图像过坐标原点,且在点处的切线的斜率是.(1)求实数的值;(2)求在区间上的最大值;(3)对任意给定的正实数,曲线上是否存在两点,使得是以为直角顶点的直角三角形,且此三角形斜边的中点在轴上?请说明理由.
设椭圆的左焦点为,短轴上端点为,连接并延长交椭圆于点,连接并延长交椭圆于点,过三点的圆的圆心为 (1)若的坐标为,求椭圆方程和圆的方程; (2)若为圆的切线,求椭圆的离心率
如图,四边形ABCD为正方形,PD⊥平面ABCD,,AF⊥PC于点F,FE∥CD交PD于点E. (1)证明:CF⊥平面ADF; (2)若,证明平面
已知 (1)求的值; (2)求的值
已知实数,函数. (1)当时,讨论函数的单调性; (2)若在区间上是增函数,求实数的取值范围; (3)若当时,函数图象上的点均在不等式,所表示的平面区域内,求实数的取值范围.
(本小题16分)已知数列的各项均为正数,数列,满足,. (1)若数列为等比数列,求证:数列为等比数列; (2)若数列为等比数列,且,求证:数列为等比数列.