对于自然数数组,如下定义该数组的极差:三个数的最大值与最小值的差.如果
的极差
,可实施如下操作
:若
中最大的数唯一,则把最大数减2,其余两个数各增加1;若
中最大的数有两个,则把最大数各减1,第三个数加2,此为一次操作,操作结果记为
,其级差为
.若
,则继续对
实施操作
,…,实施
次操作后的结果记为
,其极差记为
.例如:
,
.
(1)若,求
和
的值;
(2)已知的极差为
且
,若
时,恒有
,求
的所有可能取值;
(3)若是以4为公比的正整数等比数列中的任意三项,求证:存在
满足
.
某种汽车购买时费用为万元,每年应交保险费,养路费,保险费共
万元,汽车的维修费为:第一年
万元,第二年
万元,第三年
万元,……,依次成等差数列逐年递增.
(1)设使用年该车的总费用(包括购车费用)为
试写出
的表达式;
(2)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少).
已知数列an=n-16,bn=(-1)n|n-15|,其中n∈N*.
(1)求满足an+1=|bn|的所有正整数n的集合;
(2)若n≠16,求数列的最大值和最小值;
(3)记数列{anbn}的前n项和为Sn,求所有满足S2m=S2n(m<n)的有序整数对(m,n).
设{an}是公比不为1的等比数列,其前n项和为Sn,且a5,a3,a4成等差数列.
(1)求数列{an}的公比;
(2)证明:对任意k∈N*,Sk+2,Sk,Sk+1成等差数列.
设正项数列{an}的前n项和为Sn,若{an}和{}都是等差数列,且公差相等.
(1)求{an}的通项公式;
(2)若a1,a2,a5恰为等比数列{bn}的前三项,记数列cn=,数列{cn}的前n项和为Tn.求证:对任意n∈N*,都有Tn<2.
已知数列{an}的通项公式是an=2n-3()n,则其前20项和为( )
A.380-![]() ![]() |
B.400-![]() ![]() |
C.420-![]() ![]() |
D.440-![]() ![]() |
对于各项均为整数的数列,如果
为完全平方数,则称数列
具有“P性质”,如果数列
不具有“P性质”,只要存在与
不是同一数列的
,且
同时满足下面两个条件:①
是
的一个排列;②数列
具有“P性质”,则称数列
具有“变换P性质”,下面三个数列:
①数列1,2,3,4,5; ②数列1,2,3, ,11,12; ③数列的前n项和为
.
其中具有“P性质”或“变换P性质”的有( )
A.③ | B.①③ | C.①② | D.①②③ |
对于正项数列,定义
为
的“光阴”值,现知某数列的“光阴”值为
,则数列
的通项公式为________
给出下列四个命题:
① 因为,所以
;
② 由两边同除
,可得
;
③ 数列1,4,7,10,…,的一个通项公式是
;
④ 演绎推理是由一般到特殊的推理,类比推理是由特殊到特殊的推理.
其中正确命题的个数有( )
A.1个 | B.2个 | C.3个 | D.4个 |
对于正项数列,定义
为
的“光阴”值,现知某数列的“光阴”值为
,则数列
的通项公式为________
已知数列{an}的通项公式为an= (-1)n n,则a4=_____.
已知数列,且通项公式分别为
,现抽出数列
中所有相同的项并按从小到大的顺序排列成一个新的数列
,则可以推断
(用
表示(
)).
对数列,若区间
满足下列条件:
①;②
,
则称为区间套。下列选项中,可以构成区间套的数列是( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |