本题共有3个小题,第1小题满分4分,第2小题满分6分,
第3小题满分8分.
如果数列同时满足:(1)各项均为正数,(2)存在常数k, 对任意都成立,那么,这样的数列我们称之为“类等比数列” .由此各项均为正数的等比数列必定是“类等比数列” .问:
(1)若数列为“类等比数列”,且k=(a2-a1)2,求证:a1、a2、a3成等差数列;
(2)若数列为“类等比数列”,且k=, a2、a4、a5成等差数列,求的值;
(3)若数列为“类等比数列”,且a1=a,a2=b(a、b为常数),是否存在常数λ,使得对任意都成立?若存在,求出λ;若不存在,说明理由.
已知数列和满足:,其中为实数,为正整数.
(1)对任意实数,求证:不成等比数列;
(2)试判断数列是否为等比数列,并证明你的结论.
(3)设为数列的前项和.是否存在实数,使得对任意正整数,都有?若存在,求的取值范围;若不存在,说明理由.
已知数列{an}中,a1=2,n∈N*,an>0,数列{an}的前n项和为Sn,且满足an+1=.
(1)求{Sn}的通项公式;
(2)设{bk}是{Sn}中的按从小到大顺序组成的整数数列.
①求b3;
②存在N(N∈N*),当n≤N时,使得在{Sn}中,数列{bk}有且只有20项,求N的范围.
已知数列{an}满足a1=a(a>0,a∈N*),a1+a2+…+an-pan+1=0(p≠0,p≠-1,n∈N*).
(1)求数列{an}的通项公式an;
(2)若对每一个正整数k,若将ak+1,ak+2,ak+3按从小到大的顺序排列后,此三项均能构成等差数列,且公差为dk.①求p的值及对应的数列{dk}.
②记Sk为数列{dk}的前k项和,问是否存在a,使得Sk<30对任意正整数k恒成立?若存在,求出a的最大值;若不存在,请说明理由.
已知数列满足,,()
(1)若,数列单调递增,求实数的取值范围;
(2)若,试写出对任意成立的充要条件,并证明你的结论.
(本题满分18分)本题共有3个小题,第1小题满分6分,第2小题满分6分,第3小题满分6分.
已知,且,,数列、满足,,,.
(1) 求证数列是等比数列;
(2) (理科)求数列的通项公式;
(3) (理科)若满足,,,试用数学归纳法证明:
.
(本小题满分13分)
若有穷数列,,(是正整数)满足条件:,则称其为“对称数列”.例如,和都是“对称数列”.
(Ⅰ)若是25项的“对称数列”,且,是首项为1,公比为2的等比数列.求的所有项和;
(Ⅱ)若是50项的“对称数列”,且,是首项为1,公差为2的等差数列.求的前项和,.
已知数列的前项和为满足.
(1)函数与函数互为反函数,令,求数列的前项和;
(2)已知数列满足,证明:对任意的整数,有.
在数列中,.从数列中选出项并按原顺序组成的新数列记为,并称为数列的项子列.例如数列、、、为的一个项子列.
(1)试写出数列的一个项子列,并使其为等差数列;
(2)如果为数列的一个项子列,且为等差数列,证明:的公差满足;
(3)如果为数列的一个项子列,且为等比数列,证明:
.
设各项都是正整数的无穷数列满足:对任意,有.记.
(1)若数列是首项,公比的等比数列,求数列的通项公式;
(2)若,证明:;
(3)若数列的首项,,是公差为1的等差数列.记,,问:使成立的最小正整数是否存在?并说明理由.
已知数列的前项和为,,且(为正整数)
(1)求数列的通项公式;
(2)对任意正整数,是否存在,使得恒成立?若存在,求是实数的最大值;若不存在,说明理由.
设是给定的正整数,有序数组()中或.
(1)求满足“对任意的,,都有”的有序数组()的个数;
(2)若对任意的,,,都有成立,求满足“存在,使得”的有序数组()的个数
对于给定数列,如果存在实常数使得对于任意都成立,我们称数列是 “线性数列”.
(1)若,,,数列、是否为“线性数列”?若是,指出它对应的实常数,若不是,请说明理由;
(2)证明:若数列是“线性数列”,则数列也是“线性数列”;
(3)若数列满足,,为常数.求数列前项的和.