设{an}是公比不为1的等比数列,其前n项和为Sn,且a5,a3,a4成等差数列.(1)求数列{an}的公比;(2)证明:对任意k∈N*,Sk+2,Sk,Sk+1成等差数列.
已知x,y为正实数,满足1≤lg(xy)≤2,3≤lg≤4,求lg(x4y2)的取值范围.
已知关于x的不等式(ax-5)(x2-a)<0的解集为M.(1)当a=4时,求集合M;(2)当3∈M,且5∉M时,求实数a的取值范围.
已知a>b>0,比较与的大小.
如图,圆O的直径AB=8,圆周上过点C的切线与BA的延长线交于点E,过点B作AC的平行线交EC的延长线于点P.(1)求证:BC2=AC·BP;(2)若EC=2,求PB的长.
如图,△ABO三边上的点C、D、E都在⊙O上,已知AB∥DE,AC=CB.(1)求证:直线AB是⊙O的切线;(2)若AD=2,且tan∠ACD=,求⊙O的半径r的长.