某种汽车购买时费用为万元,每年应交保险费,养路费,保险费共 万元,汽车的维修费为:第一年万元,第二年万元,第三年万元,……,依次成等差数列逐年递增.(1)设使用年该车的总费用(包括购车费用)为试写出的表达式;(2)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少).
已知cosα+sinβ=,sinα+cosβ的取值范围是D,x∈D,求函数y=的最小值,并求取得最小值时x的值.
如右图,扇形OAB的半径为1,中心角60°,四边形PQRS是扇形的内接矩形,当其面积最大时,求点P的位置,并求此最大面积.
已知cos(+x)=,(<x<),求的值
是否存在实数a,使得函数y=sin2x+a·cosx+a-在闭区间[0,]上的最大值是1?若存在,求出对应的a值;若不存在,试说明理由.
设-≤x≤,求函数y=log2(1+sinx)+log2(1-sinx)的最大值和最小值.