高中数学

已知)是曲线上的点,是数列的前项和,且满足 .
(1)证明:数列)是常数数列;
(2)确定的取值集合,使时,数列是单调递增数列;
(3)证明:当时,弦)的斜率随单调递增

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

轴的正方向上,从左向右依次取点列 ,以及在第一象限内的抛物线上从左向右依次取点列,使)都是等边三角形,其中是坐标原点,则第2005个等边三角形的边长是      .

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

甲、乙两人用农药治虫,由于计算错误,在A,B两个喷雾器中分别配制成12%和6%的药水各10千克,实际要求两个喷雾器中的农药的浓度是一样的,现在只有两个能容纳1千克药水的药瓶,他们从A,B两个喷雾器中分别取1千克的药水,将A中取得的倒入B中,B中取得的倒入A中,这样操作进行了n次后,A喷雾器中药水的浓度为an%,B喷雾器中药水的浓度为bn%.
(1)证明an+bn是一个常数.
(2)求an与an-1的关系式.
(3)求an的表达式.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知数列满足,给出下列命题:
①当时,数列为递减数列
②当时,数列不一定有最大项
③当时,数列为递减数列
④当为正整数时,数列必有两项相等的最大项
请写出正确的命题的序号____

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,互不相同的点A1A2,…,An,…和B1B2,…,Bn,…分别在角O的两条边上,所有AnBn相互平行,且所有梯形AnBnBn+1An+1的面积均相等,设OAnan.若a1=1,a2=2,则数列{an}的通项公式是________.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

正项数列的前项和满足:
(1)求数列的通项公式;
(2)令,求数列的前项和.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数f(x)=+sinx的所有正的极小值点从小到大排成的数列为{xn}.
(1)求数列{xn}的通项公式.
(2)设{xn}的前n项和为Sn,求sinSn.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知正项数列满足:,数列的前项和为,且满足.
(1)求数列的通项公式;
(2)设,数列的前项和为,求证:.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在一个数列中,如果对任意,都有为常数,那么这个数列叫做等积数列,叫做这个数列的公积.已知数列是等积数列,且,公积为,记的前项和为,则:
(1)         
(2)          

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

若数列{an}满足d(n∈N*d为常数),则称数列{an}为“调和数列”.已知正项数列为“调和数列”,且b1b2+…+b9=90,则b4·b6的最大值是(  ).

A.10 B.100 C.200 D.400
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

对于自然数数组,如下定义该数组的极差:三个数的最大值与最小值的差.如果的极差,可实施如下操作:若中最大的数唯一,则把最大数减2,其余两个数各增加1;若中最大的数有两个,则把最大数各减1,第三个数加2,此为一次操作,操作结果记为,其级差为.若,则继续对实施操作,…,实施次操作后的结果记为,其极差记为.例如:.
(1)若,求的值;
(2)已知的极差为,若时,恒有,求的所有可能取值;
(3)若是以4为公比的正整数等比数列中的任意三项,求证:存在满足.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在数列中,
(1)证明是等比数列,并求的通项公式;
(2)求的前n项和

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知数列an=n-16,bn=(-1)n|n-15|,其中n∈N*.
(1)求满足an+1=|bn|的所有正整数n的集合;
(2)若n≠16,求数列的最大值和最小值;
(3)记数列{anbn}的前n项和为Sn,求所有满足S2m=S2n(m<n)的有序整数对(m,n).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设不等式组所表示的平面区域为Dn,记Dn内的整点个数为an(n∈N*)(整点即横坐标和纵坐标均为整数的点).
(1)求数列{an}的通项公式;
(2)记数列{an}的前n项和为Sn,且Tn.若对于一切的正整数n,总有Tn≤m,求实数m的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

对于各项均为整数的数列,如果为完全平方数,则称数列具有“P性质”,如果数列不具有“P性质”,只要存在与不是同一数列的,且同时满足下面两个条件:①的一个排列;②数列具有“P性质”,则称数列具有“变换P性质”,下面三个数列:
①数列1,2,3,4,5; ②数列1,2,3, ,11,12; ③数列的前n项和为.
其中具有“P性质”或“变换P性质”的有(     )

A.③ B.①③ C.①② D.①②③
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学一阶、二阶线性常系数递归数列的通项公式试题