(本题满分14分,第(1)、(2)小题各3分;第(3)、(4)小题各4分)
请你指出函数的基本性质(不必证明),并判断以下四个命题的正确性,必要时可直接运用有关其基本性质的结论加以证明.
(1)当时,等式恒成立;
(2)若,则一定有;
(3)若,方程有两个不相等的实数解;
(4)函数在上有三个零点.
已知函数,其中,
。(1)若是函数的极值点,求实数a的值;
(2)若函数的图象上任意一点处切线的斜率恒成立,求实数a的取值范围;
(3)若函数在上有两个零点,求实数a的取值范围。
(本题16分)已知函数,其中e是自然数的底数,,
(1)当时,解不等式;
(2)若当时,不等式恒成立,求a的取值范围;
(3)当时,试判断:是否存在整数k,使得方程在
上有解?若存在,请写出所有可能的k的值;若不存在,说明理由。
(本小题满分15分)函数,
(1)若,试讨论函数的单调性;
(2)若,试讨论的零点的个数;
(本小题满分14分)已知函数,对任意的,满足,其中为常数.
(1)若的图像在处切线过点,求的值;
(2)已知,求证:;
(3)当存在三个不同的零点时,求的取值范围.
已知函数,现将的图像向右平移一个单位,再向上平移一个单位得到函数的图像.
(1)求函数的解析式;
(2)函数的图像与函数的图像在上至少有一个交点,求实数的取值范围.
(本小题满分12分,(Ⅰ)小问2分,(Ⅱ)小问3分,(Ⅲ)小问5分)
已知a,b,c,d是不全为零的实数,函数,,方程
的实根都是的实根;反之,方程的实根都是的实根.
(Ⅰ)求d的值;
(Ⅱ)若,求c的取值范围;
(Ⅲ)若,,求c的取值范围.
已知函数.
(1)当,且是上的增函数,求实数的取值范围;
(2)当,且对任意实数,关于的方程总有三个不相等的实数根,求实数的取值范围.
(本小题满分12分)已知函数f(x)=ax-l+lnx,其中a为常数.
(Ⅰ)当时,若f(x)在区间(0,e)上的最大值为一4,求a的值;
(Ⅱ)当时,若函数存在零点,求实数b的取值范围.
已知为奇函数,为偶函数,且.
(1)求函数及的解析式;
(2)用函数单调性的定义证明:函数在上是减函数;
(3)若关于的方程有解,求实数的取值范围.
已知定义在区间上的函数,其中常数.
(1)若函数分别在区间上单调,试求的取值范围;
(2)当时,方程有四个不相等的实根.
①证明:;
②是否存在实数,使得函数在区间单调,且的取值范围为,若存在,求出的取值范围;若不存在,请说明理由.
为何值时,关于的方程的两根:
(1)为正数根;(2)为异号根且负根绝对值大于正根;(3)都大于1;(4)一根大于2,一根小于2;(5)两根在0,2之间。
已知函数().
(Ⅰ)若函数在定义域内单调递增,求实数的取值范围;
(Ⅱ)若,且关于的方程在上恰有两个不等的实根,求实数的取值范围;
(Ⅲ)设各项为正数的数列满足,(),求证:.