已知函数.
(Ⅰ)当时,证明:为奇函数;
(Ⅱ)若关于的方程有两个不等实数根,求实数的取值范围.
对于函数,如果存在实数、使得,那么称为的生成函数.
(1)下面给出两组函数,是否为的生成函数?并说明理由;
第一组:;
第二组:.
(2)设,,,生成函数,若不等式在上有解,求实数t的取值范围.
已知函数f(x)=,曲线在点(0,2)处的切线与轴交点的横坐标为-2.
(Ⅰ)求a;
(Ⅱ)当时,曲线与直线只有一个交点,求x的取值范围.
设函数.
(1)若函数在区间(-2,0)内恰有两个零点,求a的取值范围;
(2)当a=1时,求函数在区间[t,t+3]上的最大值.
已知二次函数满足(),且.
(1)求的解析式;
(2)若函数在区间上是单调函数,求实数的取值范围;
(3)若关于的方程有区间上有唯一实数根,求实数的取值范围(注:相等的实数根算一个).
已知函数在区间上单调递减,在区间上单调递增;函数.
(1)请写出函数与函数在的单调区间(只写结论,不证明);
(2)求函数的最值;
(3)讨论方程实根的个数.
某投资公司计划投资A,B两种金融产品,根据市场调查与预测,A产品的利润与投资量成正比,其关系如图1,B产品的利润与投资量的算术平方根成正比例,其关系如图2,(注:利润与投资量单位:万元)
(1)分别将A,B两产品的利润表示为投资量的函数关系式;
(2)该公司已有10万元资金,并全部投入A,B两种产品中,问:怎样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元?
已知二次函数f(x)=ax2+bx+1(a,b∈R,a>0),设方程f(x)=x的两个实数根为x1和x2.
(1)如果x1<2<x2<4,设二次函数f(x)的对称轴为x=x0,求证:x0>﹣1;
(2)如果|x1|<2,|x2﹣x1|=2,求b的取值范围.
定义在(0,+∞)上的函数f(x),对于任意的m,n∈(0,+∞),都有f(mn)=f(m)+f(n)成立,当x>1时,f(x)<0.
(1)求证:1是函数f(x)的零点;
(2)求证:f(x)是(0,+∞)上的减函数;
(3)当f (2)= 时,解不等式f (ax+4)>1.