高中数学

如图,经过村庄A有两条夹角为60°的公路AB,AC,根据规划拟在两条公路之间的区域内建一工厂P,分别在两条公路边上建两个仓库M、N (异于村庄A),要求PM=PN=MN=2(单位:千米).如何设计, 可以使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离最远).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在区间上,关于的方程解的个数为         

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,其中.
(1)若,求函数的定义域和极值;
(2)当时,试确定函数的零点个数,并证明.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为 80 π 3 立方米,且 1 2 r .假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为 c ( c > 3 ) 千元.设该容器的建造费用为 y 千元.
(1)写出 y 关于 r 的函数表达式,并求该函数的定义域;
(2)求该容器的建造费用最小时的 r

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数中,为奇数,均为整数,且均为奇数.求证:无整数根。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数中,为奇数,均为整数,且均为奇数.求证:无整数根。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知,函数的零点分别为,函数的零点分别为,则的最小值为(  )

A. B.2 C. D.1
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,则函数的零点个数为___________.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

若等差数列和等比数列的首项均为1,且公差,公比,则集合 的元素个数最多有     个.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知定义在实数集上的偶函数满足,且当时,,则关于的方程上根的个数是(  )

A. B. C. D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数的零点分别为,则的大小关系是______________.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

关于x的实系数方程的一个根在区间[0,1]上,另一个根在区间[1,2]上,则2a+3b的最大值为          

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

平面上的点使关于t的二次方程的根都是绝对值不超过1的实数,那么这样的点的集合在平面内的区域的形状是(    )

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

上海理)对区间I上有定义的函数,记,已知定义域为的函数有反函数,且,若方程有解,则

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知定义在R上的函数满足.当x[0,1]时,,若函数在区间(-1,2]有个零点,则下列命题错误的是(   )

A.若为1 B.若为2
C.若,则n为3 D.n的值可能为4
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学不定方程和方程组试题