首页 / 高中数学 / 试卷选题

上海市虹口区高三5月模拟考试理科数学试卷

是第二象限角,则是第         象限角.

来源:2014届上海市虹口区高三5月模拟考试理科数学试卷
  • 题型:未知
  • 难度:未知

复数满足,则此复数所对应的点的轨迹方程是         .

来源:2014届上海市虹口区高三5月模拟考试理科数学试卷
  • 题型:未知
  • 难度:未知

已知全集,集合,,若,则实数的值为          .

来源:2014届上海市虹口区高三5月模拟考试理科数学试卷
  • 题型:未知
  • 难度:未知

一个圆柱和一个圆锥的底面直径和它们的高都与某一个球的直径相等,这时圆柱、圆锥、球的体积之比为          .

来源:2014届上海市虹口区高三5月模拟考试理科数学试卷
  • 题型:未知
  • 难度:未知

已知,则的值为          .

来源:2014届上海市虹口区高三5月模拟考试理科数学试卷
  • 题型:未知
  • 难度:未知

定义在上的奇函数,且当时, 为常数),则的值为          .

来源:2014届上海市虹口区高三5月模拟考试理科数学试卷
  • 题型:未知
  • 难度:未知

公差不为零的等差数列中,,数列是等比数列,且,则等于          .

来源:2014届上海市虹口区高三5月模拟考试理科数学试卷
  • 题型:未知
  • 难度:未知

已知等差数列的通项公式为,则的展开式中项的系数是数列中的第        项.

来源:2014届上海市虹口区高三5月模拟考试理科数学试卷
  • 题型:未知
  • 难度:未知

已知极坐标系的极点为直角坐标系的原点,极轴与轴的非负半轴重合.若直线的极坐标方程为,曲线的参数方程为为参数,且,则直线与曲线的交点的直角坐标为          .

来源:2014届上海市虹口区高三5月模拟考试理科数学试卷
  • 题型:未知
  • 难度:未知

一个口袋内有4个不同的红球,6个不同的白球,若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种          .

来源:2014届上海市虹口区高三5月模拟考试理科数学试卷
  • 题型:未知
  • 难度:未知

棱长为1的正方体及其内部一动点,集合,则集合构成的几何体表面积为          .

来源:2014届上海市虹口区高三5月模拟考试理科数学试卷
  • 题型:未知
  • 难度:未知

是双曲线的右支上一点,分别是圆上的点,则的最大值等于           .

来源:2014届上海市虹口区高三5月模拟考试理科数学试卷
  • 题型:未知
  • 难度:未知

为实数,且满足:
,则          .

来源:2014届上海市虹口区高三5月模拟考试理科数学试卷
  • 题型:未知
  • 难度:未知

在区间上,关于的方程解的个数为         

来源:2014届上海市虹口区高三5月模拟考试理科数学试卷
  • 题型:未知
  • 难度:未知

已知为实数,若复数是纯虚数,则的虚部为(   )

A. B. C. D.
来源:2014届上海市虹口区高三5月模拟考试理科数学试卷
  • 题型:未知
  • 难度:未知

”是“函数)在区间上为增函数”的(     )

A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
来源:2014届上海市虹口区高三5月模拟考试理科数学试卷
  • 题型:未知
  • 难度:未知

如果函数上的最大值和最小值分别为,那么.根据这一结论求出的取值范围(      ).

A. B. C. D.
来源:2014届上海市虹口区高三5月模拟考试理科数学试卷
  • 题型:未知
  • 难度:未知

如图,已知点,正方形内接于⊙分别为边的中点,当正方形绕圆心旋转时,的取值范围是(    )

A. B. C. D.
来源:2014届上海市虹口区高三5月模拟考试理科数学试卷
  • 题型:未知
  • 难度:未知

如图,直四棱柱底面直角梯形,是棱上一点,.

(1)求异面直线所成的角;
(2)求证:平面.

来源:2014届上海市虹口区高三5月模拟考试理科数学试卷
  • 题型:未知
  • 难度:未知

已知数列满足:,其中为实数,为正整数.
(1)对任意实数,求证:不成等比数列;
(2)试判断数列是否为等比数列,并证明你的结论.

来源:2014届上海市虹口区高三5月模拟考试理科数学试卷
  • 题型:未知
  • 难度:未知

如图,是两个小区所在地,到一条公路的垂直距离分别为两端之间的距离为.
(1)某移动公司将在之间找一点,在处建造一个信号塔,使得的张角与的张角相等,试确定点的位置.
(2)环保部门将在之间找一点,在处建造一个垃圾处理厂,使得所张角最大,试确定点的位置.

来源:2014届上海市虹口区高三5月模拟考试理科数学试卷
  • 题型:未知
  • 难度:未知

阅读:
已知,求的最小值.
解法如下:
当且仅当,即时取到等号,
的最小值为.
应用上述解法,求解下列问题:
(1)已知,求的最小值;
(2)已知,求函数的最小值;
(3)已知正数
求证:.

来源:2014届上海市虹口区高三5月模拟考试理科数学试卷
  • 题型:未知
  • 难度:未知

已知函数常数)满足.
(1)求出的值,并就常数的不同取值讨论函数奇偶性;
(2)若在区间上单调递减,求的最小值;
(3)在(2)的条件下,当取最小值时,证明:恰有一个零点且存在递增的正整数数列,使得成立.

来源:2014届上海市虹口区高三5月模拟考试理科数学试卷
  • 题型:未知
  • 难度:未知