设函数,.
(1)解方程:;
(2)令,,求证:
(3)若是实数集上的奇函数,且对任意实数恒成立,求实数的取值范围.
定义在上的函数满足:①当时,②,设关于的函数的零点从小到大依次记为,则________.
设直线l与曲线f(x)=x3+2x+1有三个不同的交点A、B、C,且︱AB︱=︱BC︱=,则直线l的方程为( )
A.y=5x+1 B.y=4x+1 C.y=3x+1 D.y=x+1
给出下列四个命题:
①命题“,”的否定是“,”;
②已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是;
③圆的圆心到直线的距离是;
④若则方程在上恰好有1个根;
⑤对于大于1的自然数m的二次幂可以用技术进行以下方式的“分裂”:……仿此,若,则m=1007;
其中真命题的序号是 .(填上所有真命题的序号)
给出下列四个命题:
①命题“,”的否定是“,”;
②若则方程在上恰好有1个根;
③如果的展开式中二项式系数之和为128,则展开式中的系数是;
④由直线,及x轴围成平面图形的面积为;
其中真命题的序号是 .(填上所有真命题的序号)
已知函数
(1)求函数的单调区间.
(2)若方程有4个不同的实根,求的范围?
(3)是否存在正数,使得关于的方程有两个不相等的实根?如果存在,求b满足的条件,如果不存在,说明理由.