已知函数,.(1)若,求证:函数是上的奇函数;(2)若函数在区间上没有零点,求实数的取值范围.
如图,在直角梯形ABCD中,,,且,E、F分别为线段CD、AB上的点,且.将梯形沿EF折起,使得平面平面BCEF,折后BD与平面ADEF所成角正切值为.(Ⅰ)求证:平面BDE;(Ⅱ)求平面BCEF与平面ABD所成二面角(锐角)的大小.
一个口袋中有红球3个,白球4个.(Ⅰ)从中不放回地摸球,每次摸2个,摸到的2个球中至少有1个红球则中奖,求恰好第2次中奖的概率;(Ⅱ)从中有放回地摸球,每次摸2个,摸到的2个球中至少有1个红球则中奖,连续摸4次,求中奖次数X的数学期望E(X).
在中,分别为内角对边,且. (Ⅰ)求;(Ⅱ)若,,求的值.
已知数列{an}的前n项和为Sn,且Sn=,n∈N﹡,数列{bn}满足an=4log2bn+3,n∈N﹡。(1)求an,bn; (2)求数列{an·bn}的前n项和Tn。
若不等式kx2-2x+6k<0(k≠0)。(1)若不等式解集是{x|x<-3或x>-2},求k的值;(2)若不等式解集是R,求k的取值。