高中数学

已知是矩形,分别是线段的中点,平面
(1)求证:平面
(2)若在棱上存在一点,使得平面,求的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分14分)
如图6,已知点是圆心为半径为1的半圆弧上从点数起的第一个三等分点,是直径,,直线平面.

(1)证明:
(2)在上是否存在一点,使得∥平面,若存在,请确定点的位置,并证明之;若不存在,请说明理由;
(3)求点到平面的距离.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四棱锥的底面是正方形,底面,点分别为棱的中点.

(1)求证:平面
(2)求证:平面平面
(3)求三棱锥的体积.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在四棱锥E—ABCD中,底面ABCD为边长为5的正方形,AE平面CDE,AE=3.

(1)若的中点,求证:平面
(2)求直线与平面所成角的正弦值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图:四边形是梯形,,,三角形是等边三角形,且平面 平面,

(1)求证:平面
(2)求二面角的余弦值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,是以为直径的半圆上异于点的点,矩形所在的平面垂直于该半圆所在平面,且

(Ⅰ)求证:
(Ⅱ)设平面与半圆弧的另一个交点为,
①求证://;
②若,求三棱锥E-ADF的体积.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在直三棱柱中,,且中点.

(I)求证:平面
(Ⅱ)求证:平面.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在四棱锥中,平面,底面为直角梯形,,且分别为的中点.

(1)求证:平面
(2)若直线与平面的交点为,且,求截面与底面所成锐二面角的大小.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知


如图所示,四棱锥的底面是直角梯形, 底面,过的平面交,交不重合).

(Ⅰ)求证:
(Ⅱ)如果,求此时的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在三棱柱中,侧棱底面ABC,AB⊥BC,D为AC的中点,

(1)求证:平面
(2)设BC=3,求四棱锥的体积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,在四棱柱中,底面,且. 点E在棱AB上,平面与棱相交于点F.

(Ⅰ)求证:∥平面
(Ⅱ)求证: 平面
(Ⅲ)写出三棱锥体积的取值范围. (结论不要求证明)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在梯形中,,,平面平面,四边形是矩形,,点在线段EF上.

(1)求异面直线所成的角;
(2)求二面角的余弦值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知在四棱锥中,底面是矩形,平面分别是的中点.

(Ⅰ)求证:平面
(Ⅱ)若与平面所成角为,且,求点到平面的距离.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在如图所示的几何体中,四边形是菱形,是矩形,平面⊥平面的中点.

(1)求证:∥平面
(2)在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

直三棱柱ABC-A1B1C1中,AB=5,AC=4,BC=3,AA1=4,D是AB的中点.

(1)求证:AC⊥B1C;
(2)求证:AC1∥平面B1CD;

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学平行线法解答题