如图,已知在四棱锥中,底面是矩形,平面,、分别是、的中点.(Ⅰ)求证:平面;(Ⅱ)若与平面所成角为,且,求点到平面的距离.
已知椭圆(a>b>0)的离心率e=,连接椭圆的四个顶点得到的菱形的面积为4.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l与椭圆相交于不同的两点A、B,已知点A的坐标为(-a,0).(i)若,求直线l的倾斜角;(ii)若点Q在线段AB的垂直平分线上,且.求的值.
已知函数f(x)=,其中a>0. (Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)若在区间上,f(x)>0恒成立,求a的取值范围.
如图,在五面体ABCDEF中,四边形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=错误!不能通过编辑域代码创建对象。,∠BAD=∠CDA=45°. (Ⅰ)求异面直线CE与AF所成角的余弦值; (Ⅱ)证明CD⊥平面ABF; (Ⅲ)求二面角B-EF-A的正切值。
设 C 1 , C 2 ..., C n ,...是坐标平面上的一列圆,它们的圆心都在 x 轴的正半轴上,且都与直线 y = 3 3 x 相切,对每一个正整数 n ,圆 C n 都与圆 C n + 1 相互外切,以 r n 表示 C n 的半径,已知 r n 为递增数列.
(Ⅰ)证明: r n 为等比数列; (Ⅱ)设 r 1 =1,求数列 n r n 的前 n 项和.
设函数 f x = sin x - cos x + x + 1 , 0 < x < 2 π ,求函数 f x 的单调区间与极值。