如图,三棱柱的三视图,主视图和侧视图是全等的矩形,俯视图是等腰直角三角形,点M是A1B1的中点.
(1)求证:B1C//平面AC1M;
(2)求证:平面AC1M⊥平面AA1B1B.
如图所示,已知空间四边形的每条边和对角线长都等于1,点,,分别是、、的中点,计算:
(1);
(2)的长;
(3)异面直线与所成角的余弦值.
如图所示,为正方体,给出以下五个结论:
①平面;
②平面;
③与底面所成角的正切值是;
④二面角的正切值是;
⑤过点且与异面直线和均成角的直线有2条.
其中,所有正确结论的序号为_______.
如图,四棱锥,平面⊥平面,△是边长为2的等边三角形,底面是矩形,且.
(1)若点是的中点,求证:平面;
(2)试问点在线段上什么位置时,二面角的大小为.
如图,已知正方形和矩形所在平面互相垂直,,,是线段的中点.用向量方法证明与解答:
(1)求证:∥平面;
(2)试判断在线段上是否存在一点,使得直线与所成角为,并说明理由.
如图(1)示,在梯形中,,,且,如图(2)沿将四边形折起,使得平面与平面垂直,为的中点.
(Ⅰ)求证:
(Ⅱ)求证:;
(Ⅲ)求点D到平面BCE的距离。
如图,在四棱锥中,底面为菱形,,为的中点.
(1)若,求证:平面平面;
(2)设点是线段上的一点,,且平面.
(1)求实数的值;
(2)若,且平面平面,求二面角的大小.
如图,三棱柱中,侧棱垂直底面,底面三角形是正三角形,是中点,则下列叙述正确的是( )
A.与是异面直线 |
B.平面 |
C.与为异面直线,且 |
D.平面 |