如图,四棱锥中,底面为矩形,平面,为的中点.(1)证明:平面;(2)设,,三棱锥的体积,求到平面的距离.
若满足,则称为的不动点. (1)若函数没有不动点,求实数的取值范围; (2)若函数的不动点,求的值; (3)若函数有不动点,求实数的取值范围.
在四棱锥中,底面是边长为的菱形,,面,,,分别为,的中点. (1)求证:面; (2)求二面角的大小的正弦值; (3)求点到面的距离.
在中,角所对的边为.已知,且. (1)求的值; (2)当时,求的面积.
设为等差数列的前项和,已知. (1)求数列的通项公式; (2)求证: .
己知圆和直线,在轴上有一点,在圆上有不与重合的两动点,设直线斜率为,直线斜率为,直线斜率为, (l)若 ①求出点坐标; ②交于,交于,求证:以为直径的圆,总过定点,并求出定点坐标. (2)若:判断直线是否经过定点,若有,求出来,若没有,请说明理由.