如图,在四棱锥中,底面为菱形,,为的中点.(1)若,求证:平面平面;(2)设点是线段上的一点,,且平面.(1)求实数的值;(2)若,且平面平面,求二面角的大小.
(本小题满分14分)已知函数. (Ⅰ)函数在区间上是增函数还是减函数?证明你的结论; (Ⅱ)当时,恒成立,求整数的最大值; (Ⅲ)试证明:.
设数列为单调递增的等差数列且依次成等比数列. (Ⅰ)求数列的通项公式; (Ⅱ)若求数列的前项和; (Ⅲ)若,求证:
已知某公司生产某品牌服装的年固定成本为10万元,每生产一千件,需要另投入2.7万元.设该公司年内共生产该品牌服装千件并全部销售完,每千件的销售收入为万元,且. (I)写出年利润(万元)关于年产量(千件)的函数关系式; (Ⅱ)年生产量为多少千件时,该公司在这一品牌服装的生产中所获年利润最大?
设函数满足:对任意的实数有 (Ⅰ)求的解析式; (Ⅱ)若方程有解,求实数的取值范围.
三棱锥中,,,. (Ⅰ)求证:平面平面; (Ⅱ)若,且异面直线与的夹角为时,求二面角的余弦值.