如图,在四棱锥中,底面为菱形,,为的中点.(1)若,求证:平面平面;(2)设点是线段上的一点,,且平面.(1)求实数的值;(2)若,且平面平面,求二面角的大小.
本公司计划2012年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为元/分钟和200元/分钟,甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?
(本题满分14分)设函数⑴当且函数在其定义域上为增函数时,求的取值范围;⑵若函数在处取得极值,试用表示;⑶在⑵的条件下,讨论函数的单调性。
(本题满分13分)已知函数是上的偶函数.(1)求的值;(2)设,若函数与的图象有且只有一个公共点,求实数的取值范围.
(本题满分12分)已知是一个公差大于的等差数列,且满足.数列,,,…,是首项为,公比为的等比数列.(1) 求数列的通项公式;(2) 若,求数列的前项和.
(本题满分12分)某风景区有40辆自行车供游客租赁使用,管理这些自行车的费用是每日72元。根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆。为了便于结算,每辆自行车的日租金(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得)。(1)求函数的解析式及其定义域;(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?